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ABSTRACT 

The vortex cloud method is explored as an alternative to more traditional approaches 

to the study of delta wing aerodynamics. Typically, the aerodynamics of slender delta 

wings with separated flow is analyzed by either CFD or panel methods. Within limits, 

the vortex cloud offers definite advantages over such methods. Contrasted with numerical 

solutions of the Euler or NS equations, the vortex cloud leads to a far better definition of 

the shear layers characterizing the flow over the leeside of a delta wing, and is also much 

I 

1 more economical. The vortex cloud is also more economical than panel methods. 

The vortex cloud method consists in simulating a separated two-dimensional flow with 

a "cloud" of point vortices. This allows for the treatment of a separated flow problem in 

an inviscid framework, with great advantage in speed of computation. The vortex cloud 

approach lends itself ideally to two-dimensional problems, and has been so used in the 

past. This approach is quite successful at computing important quantities of separated 

flows, such as Reynolds stresses and Strouhal numbers. 

The vortex cloud description of a separated flow can be adapted to the analysis of 

slender delta wings by recognizing that, in a sense, such a wing gives rise to a locally 

two-dimensional flow field. As a slender delta wing moves at an angle of attack past a 

stationary observer, each wing cross section is seen by the observer to "plunge" in the fluid 

medium. This observation leads to the concept of cross-flow plane analysis, which has been 

used in the past to implement various versions of discrete-vortex methods to study delta 1 

I wing aerodynamics. 

In this work, the vortex cloud method is rigorously adapted to the study of slender, 

flapped delta wings by casting the three-dimensional equilibrium problem into a time- 

marching form through an analogy between a 3-D conical and a 2-D self-similar unsteady 

flow. The range of applicability of the theory is defined, and calculations of load distri- 
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butions and wake geometries are compared with experiments and with results from other 

numerical techniques. 

Comparison with experimental data shows that when the restrictions of the theory are 

respected, agreement is quite good. Typical computational times are about 5 minutes on 

a VAX 780. 
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NOMENCLATURE 

a 

b 

C 

e 

f 

9 

H 

K 

1 

M 

m 

n 

P 

R 

S 

S 

- s  

T 

t 

element of geometric influence coefficient matrix 

vector element in system of equations 

pressure coefficient 

constant, vortex core, shear layer core 

unit vector 

wing cross section shape function, 

normalized vorticity distribution function inside core 

dispersion of vorticity inside core 

total head 

geometric influence coefficient 

body panel length 

angular momentum inside core 

similarity coefficient 

unit vector normal to wing surface 

static pressure 

resultant force, characteristic length 

radial direction in cross-flow plane 

conical coordiante, Prandtl’s similarity variable, 

distance normalized with core radius 

wing shape function 

slope of body panel 

distance along wing cross section 

characteristic time 

time like variable 
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U 

U 

U 

V 

X 

3 

z 

a 

6 

E 

rl 

r 
Y 

IUl 
uniform velocity vector 

axial velocity component 

magnitude of projection of velocity in cross-flow plane, disturba nt-0 . A v01,.f.;+-, 

coordinate vector 

chordwise distance from delta wing apex 

complex representation of cross-flow plane 

angle of attack 

flap deflection angle 

wing half apex angle 

spanwise component of bound vortex 

vortex strength 

vorticity distribution function inside core, vortex intensity, 

vorticity vector on wing surface 

kinematic viscosity coefficient 

resultant velocity potential 

disturbance velocity potential 

stream function 

density, distance inside core 

vorticity component normal to cross-flow plane 

vortex core radius 

angular coordinate in cross-flow plane, separation angle 

chordwise component of bound vorticity 

Subscripts 

C core 

F flap 

1 lower part 
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n normal component, new 

S separation point 

U upper part 

2) vortex position 

W wing 

X , Y , Z  wing reference coordinate system 

00 far field 
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. 1. INTRODUCTION 

In the past decades numerous studies have been conducted on the wake flow on the leeside 

of low aspect ratio delta wings."16 Delta wings usually operate with separated vortical 

flow regions, as shown in Fig. 1. The vortical flow, which enhances the lift on the wing, 

is difficult to control with conventional control surfaces. The leading edge flap has been 

suggested as a control device to increase the maneuverability of delta wings. Various 

shapes of leading edge flaps have been studied in an attempt to optimize their influence 

on the aerodynamics of delta wings."-24 One of the effects of leading edge flaps is to 

increase the wing lift-to-drag ratio by causing a thrust component of force to act on the 

flap surface. Leading edge flaps also have the detrimental effect of partially suppressing 
~ 

I 
I the vortical flow, thereby reducing the total lift. These two phenomena have been observed 

e~perimentally '~*~~ and theoreti~ally.~~ 

In previous the simple Brown-Michael model3 for the vorticd flow was chosen 

to investigate the qualitative effects of leading edge flaps on the aerodynamics of delta 

wings. Due to the crudeness of the vortex model only global quantities, such as lift 

and drag, were evaluated. It is well known that the Brown-Michael model does not yield 

satisfactory vortex positions, which results in inaccurate pressure distributions. This work, 

a continuation of that study, applies the vortex cloud method to the analysis of three- 

dimensional (3-D) conical flows by means of a two-dimensional (2-D) self-similar unsteady 

flow analogy. It has been shown that with the simple relationship z = Ut, where 2 

represents the chordwise direction of delta wings, a 3-D conical flow can be reduced to 

, , 
~ 

~ 

I 

l a 2-D unsteady flow if geometrical and aerodynamical slenderness are satisfied.' This 

procedure leads to an efficient methodology with good definition of shear layers. Another : 
~ 

I motivation for the use of this approach is the parallel between the physics of planar shear 

layers and the delta wing rolled-up vortex layer, as suggested in Fig. 3.*' 
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The methodology adopted here consists of an adaptation of an intrinsically 2-D ap- 

proach originally developed to describe separated flows past bluff The 2-D 

approach consists in tracing the trajectories of a large number of discrete vortices. A prob- 

lem facing methods of this type is the large velocities induced by neighboring vortices. 

Some researchers have used finite core sizes to avoid infinite mutually induced ve l~c i t ies ,~~ 

while others redistributed the vortices at each time step so as to avoid a logarithmically in- 

finite ~elocity.~’ In Spalart’s study,= the cloud-in-cell technique combined with a discrete 

vortex method having finite core size was used to make the scheme computationally effi- 

cient. This is necessary in most 2-D problems, where the formation of a “vortex jungle”33 

in the wake would, otherwise, cause the computation to become very expensive. In conical 

flow, on the other hand, the “vortex jungle” would represent the vortex core. Such a 

representation of a vortex core in a 2-D unsteady flow is unrealistic due to the appearance 

of high axial velocities, which would violate the aerodynamic slenderness assumption and 

could not be modeled in a 2-D flow context.’ For a 2-D unsteady flow, the imposition of 

a Kutta condition requires particular care, since it arises from the discretization of body 

geometry and wake. The conventional description for the Kutta condition is that some 

amount of vorticity is shed into the surrounding fluid at each time step, with strength and 

position determined by the satisfaction of appropriate conditions at separation  point^:^-^' 

In this study, the quasi-steady Kutta condition is adopted by fixing the separation angle. 

In this particular case fixing the separation angle has little infiuence on the whole vortex 

system. The solution procedure is by successive 2-D computations, where at each time 

step the cross-section of the wing is modeled with discrete singularities, whose magnitudes 

result from the solution of a system of linear equations. With this treatment of the Kutta 

condition, matrix inversions, which requires large computational effort, can be avoided at 

each iteration by decoupling the Kutta condition form the system of equations. 

. 

An alternative implementation of discrete vortex methods consists in seeking the equi- 

librium positions of the vortices simulating the 3-D separated flow. This is accomplished 
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by systematically altering their strengths and locations. This approach was fist  applied 

to conical flows by Smith.' Similar procedure using 3-D panel codes have also been 

r e p ~ r t e d . ~ l * ~ ~  Those methods requires a matrix inversion at each iteration step, which 

tends to make them expensive. In addition, the vortex structure revealed by such meth- 

ods consists of smooth shear surfaces, while experiments have indicated that structures 

similar to the ones in 2-D shear layers are also found in the vortical flow of delta wings2' 

In the present study, the increment of the lift-to-drag ratio, lift reduction and the 2-D 

shear layer type flow, together with the distortion of the vortex system during flap deflec- 

tion are investigated. A simple merging scheme for the core region is adopted, whereby the 

vortices which rotate more than a given angle about the core are allowed to merge together 

at the centroid of the core and the merging vortices. The three dimensionality of the flow 

field is implemented through a modification of the Kutta condition, the normalization of 

the flow quantities, and the way the pressure on the wing surface is calculated. The cred- 

ibility of the present scheme is tested by comparing shear layer shape, core position and 

strength, as well as pressure distributions with results from other analyses as well as from 

 experiment^.'^ The maximum flap deflection angle for which this methodology remains 

d i d  is found by using a simple geometrical relationship. A deflection beyond that limit 

would cause the leading edge vortex system to move under the wing surface, a situation 

that cannot be accounted for in this work. 
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2. MATHEMATICAL PROCEDURE 

2.1 Governing Equations 

In this section a brief review of mathematical studies of a 3-0 conical flow is presented. 

R.T. Jones’ first introduced a simple coordinate transformation for a low-aspect ratio wing 

for supersonic flows. The validity of this transformation in the case of an incompressible 

flow is studied and the criteria of this transformation are investigated. Mathematical 

details were derived in previous The incompressible, potential 3-D conical flow, 

corresponding to the flow field illustrated in Fig. 1, can be represented by the following 

three equations: 

Laplace’s equation: 

Tangency condition on wing and vortex sheets: 

Pressure continuity across vortex sheets: 

-- P - Po = 2 U ( O - r $ )  + (0 - .g)2 + (g)2 + -( 1 a4 ) 2 = 0 (3) PI2 F2 de 

Eq. (1) is Laplace’s equation written in the conical coordinate F = r /x  , Eq. (2) is the 

condition that the wing surface and the vortex sheet, S(z, r ,6)  = P - z f(B), must be 

stream surfaces. Eq. (3) expresses Bernoulli’s equation on the vortex sheet, postulating 

that no pressure difference across the vortex sheet exists. 

The corresponding equations for a 2-D, unsteady self-similar flow are 
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( 5 )  

Here F = (2) / ( +)m is Prandtl's unsteady similarity variable, and T and R are a charac- 

teristic time and length. The wing surface and the vortex sheet geometry are represented 
m 

by S(t,r ,O) = r - R (i) f(0). Equations (l), (2) and (3) become identical to (4), 

( 5 )  and (6) respectively if m = 1 with the conditions F << 1 and ut = r$ - s;(a+/lP) << 1, 

where v, represents a perturbation on the axial velocity component. Setting m = 1 also 

guarantees that the transformation 3: = Ut holds. The conditions P << 1 and v, << 1 

represent the geometrical and aerodynamical slenderness respectively. 

The simple Galilean tranformation 3: = U t ' is applicable to a subsonic conical 

flow only if aerodynamic and geometric slendernesses are satisfied. This is a necessary 

condition for a 3-D conical flow to be reducible to a 2-D unsteady self-similar flow. A 

necessary condition can be derived by a perturbation analysis of Eq. (1). For the delta 

wing problem at an angle of attack with respect to a free stream velocity, the velocity 

potential can be assumed to be of the form 

If the angle of attack a! and the wing apex angle e are both of order P , the second term 

in the bracket in Eq. (7b), which represents the vertical component of the free stream in 

the cross-flow plane, is of order E'. Expanding the velocity potential 



the governing equation for @ 2  becomes Eq. (4) up to order e2 . If a and e were of different 

order of magnitude, the velocity potential would have to be expanded as 

and the governing equation for would fail to reduce to Eq. (4). Thus, the approach 

used in this study is valid in a range such that the order of magnitudes of the angle of 

attack and that of the delta wing apex angle are the same as well as that the flow field 

must satisfy aerodynamic and geometric slenderness. 

2.2 Governing Equations: 2-D Unsteady Flow 

As mentioned above, an equivalent 2-D unsteady flow is solved to simulate a 3-D conical 

flow. In this case, the momentum equation takes on a simple form when expressed in 

terms of vorticity, since no stretching term is present. The governing equations for a 2-D 

unsteady, incompressible flow are: 

Continuity: 

v - u  = 0 

Momentum: 

Du 1 - -  - -vp + uv2u 
Dt P 

or, in tenns of vorticity 

- Dl = uv2e 
Dt 

where, by definition (ez = V x u. 

If viscosity is neglected, Eq. (12) reduces to 
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The stream function, q , is defined through the equality 

u = V x q e ,  (14) 

Combining Eqs. (14) and (10) with the definition of €e=, the continuity equation in terms 

of the stream function becomes 

V2Q = -( (15) 

The boundary condition and the far field condition for an inviscid flow are 

u - n  = 0 

u +u, 

In terms of stream function 

Q = constant 

\k = 9, 

on wing surface 

a x - +  00 

on wing surface 

a x +  00 

The governing equations are replaced by Eq. (15) and Eq. (13) with conditions given by 

Eqs. (17a,b). 

2.3 Vortex Model 

In this study the rolled-up shear layer is replaced by a cloud of discrete vortices having finite 

core size, each of which is generated from the separation point at a time step. C h ~ r i n ~ ~  

first introduced the concept of vortices in the cloud approach having finite core size, so 

that all of the rotational and viscous effects can be assumed to take place inside the core, 

while outside of this core the flow field is governed by conventional potential theory. Using 
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this concept, the vorticity distribution, which appears in the right hand side of Eq. (16), 

can be represented as: 

N 
t(x, t )  = ri Ti( Ix - x;(t)l) (18) 

i=l 

where yi is the vorticity distribution function satisfying the normalizing condition 

i -y i (x )  dx = 1 

In case of point vortices, the functions yi's become the dirac-delta function S(x - x,). 

Introducing a core radius ui, Eq. (18) can be written as: 

where f is a shape function common to all vortices. 

The velocity induced by the vorticity distribution I';y;(lx - x;(t) l )  is 

The following distributions, first used by Spalad,= will be applied here 



where F = r /a .  

These distributions are shown in Fig. 4. The vorticity distribution is directly related to the 

vorticity diffusion. Prandt144 studied vorticity diffusion by solving the diffusion equation 

and found that 

u2 a t (25) 

valid for a Gaussian distribution of vorticity. Here, distributions given by Eqs. (23) and 

(24) are used together with the diffusion relationship given by Eq. (25). 

2.4 Kutta Condition 

In this approach, a new discrete vortex is generated from the separation point at eac n 

time step such that the flow field including this new vortex satisfies an appropriate Kutta 

condition at the separation point. For an unsteady flow, as opposed to a steady flow, the 

vorticity is supplied to the surrounding fluid continuously from a separation point such 

that the strength and the position of the shed vorticity allow for pressure continuity to 

be satisfied. Such strength and position are functions of the velocity on each side of the 

vortex sheet. From Fig. 5a, Bernoulli’s equation on each side of the vortex sheet is 

1 a41 
Hl = - P U z 2  2 4- p1 + p -  at 

Here, H, u and p represent the total head, velocity and pressure respectively. The total 

head must be the same on each side since the whole flow is started from a uniform state. 

This requirement, together with pressure continuity, gives 
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Since the difference of velocity potential across the sheet represents the vortex intensity of 

the sheet, there results 

dr = - 1 2  I(U1 -uu2)1 la1 2 

The separation angle of the vortex sheet, O,, is such that the boundary condition on the 

wing surface, given by Eq. (17a), is satisfied. In this study the separation angle is set to 

zero, as shown in Fig. 5b, implying that vorticity going into the vortex structure is shed 

parallel to the lower surface.40 This assumption makes the velocity on the upper side of 

the vortex sheet equal to zero, since the assumed streamline, as indicated in Fig. 5b,causes 

a stagnation point on the upper part of the vortex sheet. Combining Eq. (28) with the 

transformation 2 = U cos Q t, the strength of a new vortex can be calculated. 

1 Ax 
2 ucos Q 

- - - Ul 

The position of this new vortex can be obtained by considering the convection velocity at 

the separation point. By definition, a vortex sheet moves with the average of the velocities 

at its two sides. Then, the convection velocity of the newly shed vortex is 

= - 1 (241 +uu) = 5 1 24, 
2 

The position of the new vortex is then 

where z, is the position of the separation point, and S, is the slope at  the separation 

point, as illustrated in Fig. 5c. 
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2.5 Wing Cross-Section Representation 

The problem consists in solving Eq. (16) with the vorticity distribution given by Eq. (18) 

on the rolled-up shear layer, subject to boundary conditions (17a,b) and the Kutta condi- 

tion expressed by Eqs. (29) and (31). In this study the wing cross-section is represented 

by vorticity panels with linearly varying strength. The body is divided into m panels and 

at nth time step there are n vortices in the wake, as shown in Fig. 6. The stream function 

at the ith panel c m  be written as 

with ~(sj) the bound vortex strength at the jth panel, and K(s ; ,  sj)  the geometric influence 

coefficient, which depends only wing geometry. The second term on the right hand side 

represents the stream function due to the discrete vortices distributed on the shear layer. 

r ; k  is the distance between the ith panel and the kth vortex. The last term in h. (22) is 

due to the free stream. In this approach the relevant velocity is the vertical component in 

the cross-flow plane. Boundary condition (17a) gives 

Conservation of vorticity implies that the sum of the vorticity in the whole flow field must 

be zero 

Combining Eqs. (32), (33) and (34), the following system of equations results 



The matrix a;j is called the geometric influence coefficient matrix and is constant during 

time iteration. The last row in the matrix represents the integration of the bound vortex 

strength. Using a trapezoidal rule for the integration, sj can be written as 

where 2, is the length of jth panel. c is the constant value of the stream function representing 

the wing surface, and the bj’s are the stream function values induced by the wake and the 

free stream. The computational implementation of matrix a;j is described in Lee’s work4’ 

Eq. (35) is solved until the solution (the vortex position and strength and the bound vortex 

strength) reach a steady state. Only the left-hand-side vector is varied at each time step 

by increasing the number of vortices in the shear layer, while the right-hand-side matrix 

is kept constant. 

2.6 Wing Load Distribution 

The pressure distribution on wing surfaces for a 2-D unsteady flow field can be obtained 

using the unsteady Bernoulli’s equation 

1 1 a4 P ,  + - p U 2  2 sin2 CY = p + z p v 2  + P a t  (37) 

where v, is the velocity on the wing surface 

Using the transformation x = U cos CY t, the last term in Eq. (37) can be rewritten as 

34 - u cos a - a4 
at ax 
- -  

Then the pressure coefficient is 

1 34 
u ax 

2 
= sin's! - (’) - 2 c o s a - -  
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This is equivalent to the first order term of the pressure coefficient obtained from slender 

body theory, which gives 

2 2 

c, = 1 - (5) - (cos, + ’> U U 

(;I2 = 1 - ($) - cos2, - 2- - U 2 

U 

21 2 
N sin2 cy - (5) - 2- cos a U 

The velocity component v, is numerically equal to the bound vortex strength per 

unit length, since the flow internal to the wing cross-section is assumed to be at rest. As 

indicated in Fig. 7, the bound vortex strength can be written as 

7 d s  = 1 v - dl = v,ds 

hence 

7 = vc (42) 

In this study, the bound vortex strength itself represents the outer velocity of the boundary 

layer. As a result, the velocity v, in the cross-flow plane can be obtained from the solutions 

of Eq. (35). The perturbation velocity in the axial direction can be obtained from the 

following conical relationship 

acp z E)  u = L ( @  - Y a y -  a z  X 
(43) 

The velocity potential is given in terms of logarithmic functions and its evaluation requires 

consideration of branch cuts, as shown in Fig. 8. 

By integrating the load distribution given by Eq. (39) over wing and flap surfaces, the 

total resultant force on each surface can be obtained 

16 



where W and F represent wing and flap surfaces respectively. 

These resultant forces can be decomposed into lift and drag 

Lw = RWCOSQ 

DW = R w s i n a  

LF = RF (cos 6 + tan r sin6 sin a) 

DF = RF (cos 6 sin a - tan e sin 6 cos a) 

The lift-to-drag ratio of the wing is then 

where R, and R F v  represent the force components acting on wing and flap surfaces, as 

shown in Fig. 9.' The second term inside the bracket shows the increment in L I D  due to 

flap deflection, which is of the same order of magnitude as the lift-to-drag ratio without 

flap deflection. Detailed derivations are given in Ref (23). 

. 

2.7 Limits of Flap Deflection Angle 

The present study uses a cross-flow plane analysis, which implies that the significant ve- 

locity component causing separation along leading edges is the component normal to the 

wing surface. The maximum flap deflection compatible with this approach is related to 

the velocity component normal to the flap surface. If that component is directed towards 

the upper flap the surface, as shown in Fig. 10, the vorticity system tends to be located 

under the wing, as demonstrated by experiments. Experimental observations on a model 

of aspect ratio 2.312' showed that the vortical system was located under the wing surface 

when the angle of attack was larger than the flap deflection angle. In general, the ratio 

a / e  for which this situation occurs is expected to depend on the wing aspect ratio. The 

cross-flow plane analysis cannot, by definition, exactly account for the actual orientation 

17 



of the velocity component normal to the flap surface. Since the discrepancy between the 

actual velocity component normal to the flap surface and the one assumed by the cross-flow 

analysis increases with flap deflection, this method is expected to fail for flap deflections 

beyond a certain range. An assessment of that range can be made by considering under 

which conditions the velocity component normal to the flap surface vanishes (a situation 

unaccountable for in the cross-flow analysis.) This assessment is facilitated if the velocity 

component normal to the flap surface is assumed to be due to the free stream velocity 

alone, that is, if the perturbation velocity of the wing is neglected. This is plausible if the 

angle of attack and apex angles are both small. 

The outward normal vector, n, on the flap surfaces is 

n = -sin 6 sin E e, + cos 6 e, + cos e sin 6 e, 

The free stream velocity has two components such that 

U, = U c m a e ,  + U s i n a e ,  

The component of the free stream normal to the flap surface is then 

U,, = U, n = -U sin 6 sin e cos 6 + U sin a cos 6 

The condition that U,, > 0 is 

tan a 
sin E 

> t an6  

(47) 

(49) 

The boundary shown in Fig. 11 represents the limit where the component of the free 

stream velocity normal to the flap surface vanishes for E = 22 deg.. 
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2.8 Trailing Edge Wake 

The trailing edge wake after a delta wing, as shown in Fig. 1, has a shape different from 

that of a conventional large aspect-ratio wing. The pressure peak just below the leading 

edge vortex core causes a vorticity distribution such that the bound vortex strength, as 

a function of spanwise location, has a maximum between the wing center and the wing 

leading edge, as illustrated in Fig. 12. In this study the conical flow is treated under 

the assumption that the wing extends infinitely far downstream, namely, no trailing edge 

exists. To study the trailing edge wake roll-up in a qualitative way, an artificial trailing 

edge is assumed to exist, from which the conical vorticity distribution calculated on the 

wing surface is released . A Kutta condition is applied such that there is no pressure jump 

at the trailing edge. 

The bound vorticity on the wing surface has two components, as shown in Fig. 13. 

These two components must satisfy the divergence free condition 

where 7 = ( e, + q e, 

The absence of a pressure jump at the wing trailing edge demands that the shed vorticity 

at the trailing edge should be aligned with the local velocity. An approximation form of 

the trailing edge Kutta condition can be written as follows 

then Eq. (51) reduces to 

or 

c = C ( 4  
19 



This indicates that < , which is identified with the 7’s from EQ. (35), is constant as 

it moves downstream. After the trailing edge, the evolution of the wake is solved in a 

straightforward way using a 2-D time evolution technique. 
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3. NUMERICAL IMPLEMENTATION 

3.1 Kutta Condition 

The flow separation in a 2-D or a 3-D flow arises from viscous effects. An equivalent effect 

is imposed on the inviscid problem through a Kutta condition. A converged quasi-steady 

analysis requires that the shed vorticity at the wing side edges be convected with finite 

velocity. This velocity, not known a priori, is the average of the velocity on both sides 

of the wing at the side edge.= In a 2-D case the velocity at the separation point can 

be determined from the experimentally established fact that the Strauhal number, when 

expressed in terms of the base pressure at the separation point, is constant.30 Experimental 

observations on the flow past an inclined flat plate have shown that this velocity is about 

1.5 U, .30 Under the conical flow assumption, the value of this velocity must be constant 

along the leading edges. Other workers have attempted to find this value experimentally 

and applied it to the solution of delta wing problems with the vortex cloud method,12 

failing to attain converged solutions. In this work this velocity is determined by recognizing 

the fact that, after a sufficiently large time, it must achieve a constant value, for given a, 

c and 6 . It was found t a  if an initial value for the bound vortex strength of about 3U, 

is assumed, convergence to the h a l  value of the side edge convective velocity is achieved 

within 300 steps. Too large initial values lead to oscillatory end behavior, while to small 

initial values require significantly more time steps. 

3.2 Core Model 

The core region for a conical flow has large axial velocity and the flux of vorticity generated 

along the leading edges and supplied to the core through the rolled-up shear layer is 

balanced by that convected by the axial velocity. Thus, the core region, usually identified 

with the “vortex jungle” for a 2-D vortex cloud method, cannot be included in this model 
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of the conical flow since it would violate the condition of aerodynamic slenderness. Hence, 

the core region is represented by a single vortex through a simple merging scheme. By 

imposing a restriction on the rotation angle of the vortices, the efficiency of the numerical 

effort is increased and good definition of shear layer is achieved. Other studiess-l6 have 

shown that the rotation angle of the shear layer, as long as it is set greater than 27r, has a 

s m a l l  effect on overall quantities. The same conclusion is arrived at in this study. 

The vortices which rotate more than a given angle are allowed to merge to the core, 

which is then simulated by a single vortex. The position, strength and core size are 

determined such that the angular momentum before and after the merging is conserved. If 

IC vortices are merged together, conservation of angular momentum outside the core region 

is expressed by the following relationships for the core position and strength 

k 
rc = ri 

i= I 

The angular momentum inside the core is 

(54) 

(55) 

where r is the position vector from the origin to the core center, and p is a vector from 

the core center to a point inside the core. U is the velocity distribution inside the core as 

given by Eq. (23). Performing the integration, the angular momentum reduces to 

17 
24 

M = - r a 3  (57) 
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Then the core size after merging is 

uc3 = 

The strength and position are independent of the vorticity distribution inside the core, but 

the core size is dependent on the vorticity distribution. 

3.3 Merging between Neighboring Vortices 

A similar merging technique as the one used in the core model is also applied to the 

neighboring vortices such that if the distance between them is less than a given value two 

vortices are allowed to merge into one. This value is set equal to the mean value of the radii 

of two vortices. The position, strength and the core radius after merging are determined 

from Eqs. (54), (55) and (58). The merging scheme allows for a reduction of the total 

number of vortices by almost a half, making the scheme much more efficient. 

3.4 Merging of Vortices on Wing Surfaces 

In this discretizatios of a separated wake, vortices coming very close to the wing surface 

have the tendency to penetrate the wing surface. This is observed to happen even with 

very s m a l l  time steps and large number of panels. A means of fixing this difficulty has been 

suggested by Lighthill", and consists in allowing the vortices that come within a thin layer 

on the wing surface to disappear. Another way of solving this difficulty is by relocating a 

vortex that penetrated the surface in a preceding time step on its image point outside the 

surface.35 In this study the vortices which come closer to the wing surface than a given 

distance, which is taken as 0.5% of the half span length, are made to disappear. The 

effect of the merged vortex appears through Eq. (34) by rearranging the bound vortex 

. 

23 



distribution for the next time step. This surface merging occurs when the angle of attack 

is small or when the flap deflection angle is large. 

3.5 Integration Method For Advancing Vortex Position 

Any 2-D discrete vortex method contains a vorticity diffusion effect due to the numerical 

error involved in time integration. The numerical diffusion effect is shown in Fig. 14. 

Some a ~ t h o r s ' ' * ~ ~ * ~ ~  maintain that this numerical error could be responsible for instability 

of the vortex motion. Others3' suggest that this numerical error simulates a turbulence 

diffusion rather than a viscous diffusion. In a conical flow the diffusion effect arising from 

the numerical error is less marked than in a 2-D flow. This may be attributed to the fact 

that the shear layers in the conical flow develop in a field of intense circumferential velocity, 

which allows for a shorter time during which numerical dissipation acts. Here both a 1st 

order Euler method and a 4th order Runge-Kutta method were used for time integration. 

These schemes are: 

1st order Euler method 

4th order Runge-Kutta method 

At + At/2) = ZU(t) + 2 U,(t, Z,(t)) 

At 
Z:'(t + At/2) = &(t)  + - U,(t + At/2,2z(t + At/2)) 

2 
Zz**(t + At) = Z,,(t) + At U,(t + At/2,2:*(t + At/2)) 

z,(t + At) = &(t) + $ (U,(t, Z,(t)) + 2 U,(t + At/2,2:(t + At/2)) 

+ 2 U,(t + At/2,2:'(t + At/2)) + U,(t + At, Z:**(t + At)))  

(60) 
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4. RESULTS 

According to the argument given in chapter 2, the range of angle of attack was chosen of 

same order as the wing apex angle. For comparison with experiments three values of angle 

of attack were selected, a = 15, 25, 35 deg. This satisfies the requirement O ( a )  = O ( E )  

for the experimental model used in Ref. (43). 

Fig. 15 shows the convergence of the vortex strength at the separation point for an 

initial guess of vortex strength of 3U,. Significant owillation caa be seen during the first 

50 steps. If too large an initial guess is used, the vortex strength oscillates such that it 

changes sign during some time steps, leading to nonphysical results. A proper initial guess 

for each case, given a and 6, is needed to obtain the final vortex strength at the separation 

point. 

Fig. 16a shows the vortex jungle that arises when no core model is used. In addition, 

the shear layer is not clearly defined. Fig. 16b shows a case where a core rotation angle 

of 2 . 5 ~  was imposed for the same configuration and shows a good definition of the shear 

layer. 

Fig. 17 shows the comparison between Smith's calculation' and this theory for the 

' core position and the geometry of the rolled-up shear layer, for a/€ = 1. 

A comparison between results from a 3-D panel code analysis24 and the present method 

is illustrated in Fig. 18 for the case of a leading edge fence, corresponding to an upward 

deflection of the leading edge flap of more than 90 deg. The results form the 3-D panel 

analysis were chosen at the 30% chord from the apex to minimize the upstream effect of the 

trailing edge. Fig. 18a is the case without the fence. The pressure peak point calculated by 

this analysis is closer to the leading edge as compared with the panel results. The case of 

130 deg. fence angle is shown in Figs. 18b,c. The results show better agreements between 

both calculations for the case of deflected fence. The present study reveals a narrower 
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pressure peak region. 

The data for the comparison with experiments were taken from Ref. (43), where the 

model had a thickness at the trailing edge of 7.7% of the half span and a 22 deg. half 

apex angle for undeflected flap. The ratio of the total span to that of the main wing was 

0.61. The data used for comparison were measured at a spanwise station located 37% of 

the chord from the apex, again to minimize the effect of trailing edge.. 

Figs. 19a,b show the rolled-up shear layer and surface pressure distribution for a =25 

deg. aad 6 = 0 deg. Agreement can be considered very good, except for a small region 

near the leading edge, where a secondary vortex may have been present in the experiments 

and would be responsible for the disagreement. 

Figs. 20 and 21 are the cases for flap deflection angle of 15 deg. and 30 deg. and 

same angle of attack as the case of Fig. 19. The pressure at the centerline decreases with 

flap angle, which indicates that the effect of flap deflection is similar to a reduction of 

angle of attack. Although the vortex position does not move much with flap angle, some 

movement toward the surface is observed, which has also been reported elsewhere.23 The 

hinge vortex is hardly observable in the cases analyzed here, being quite weak and tending 

to be absorbed on the wing surface. Fig. 21 shows a weak hinge vortex. The greater 

discrepancy between computation and experimerit near the leading edge is attributed to 

the stronger secondary vortices at higher flap deflections. 

Fig. 22 shows the case of Q = 15 deg., without flap deflection. The pressure distribution 

shows good agreement. The effect of a secondary vortex is also stronger than that at Q =25 

deg. 

Fig. 23 shows the rolled-up shear layer and surface pressure distribution when Q =35 

deg., without flap deflection. The shear layer shows a tendency to produce a type of 

coherent structures which have been experimentally observed, as described in Fig. 2, 

taken from Ref. (25) 

The convergence of the present calculation can be assessed through core position, core 
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vortex strength and core radius, as shown in Figs. 24a,b. The core vortex strength shows 

some oscillation even after convergence is attained, since the vortices in the shear layer 

merge into the core with some time interval. 

Fig. 25 shows the effect of two schemes of time integration. As anticipated in chapter 3, 

the lth order Euler scheme gives a much more diffused shear layer than the 4th order Runge- 

Kutta method. Overall flow field features do not depend significantly on the integration 

scheme. 

The effect of the nerging scheme between neighboring vortices is shown in Figs. 26a,h. 

By replacing high density clouds with fewer vortices, the total number of vortices is reduced 

by almost a half. 

The calculated trailing edge wake is compared with computations using a higher-or& 

panel method47 for three different time steps. As can be seen in Fig. 27, good agreement 

is obtained. 

Fig. 28 shows the effect of core rotation angle on the pressure distribution for the 

case of the leading edge fence of Fig. 18. Four core rotation angles were studied. The 

vortex strength decreases with increasing core rotation angle, with values greater than K 

not exhibiting any significant change in vortex strength for this configuration. Even large 

variations of rotation angle cause little change in pressure distribgtion. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

A conical delta wing with leading edge flaps was analyzed using a modified 2-D vor- 

tex cloud method based on a mathematical analogy between 3-D conical flows and 2-D 

unsteady self-similar flows. To avoid the problem of high vortex stretching due to large 

axial velocities in the core region, a simple core model was used. Previous work has shown 

that the effect of flap deflection is similar to a decrement of angle of attack. This has 

been confirmed in this work. The distortion of the rolled-up shear layer as a result of flap 

deflection was also studied. With simple and shear layer core models good shear layer 

definition and satisfactory agreement between theory and experiments in surface pressure 

distribution was achieved. 

For the range of angle of attack analyzed here there is a negligible hinge vortex. The 

experimentally observed instabilities of the shear layer is hardly found, except in the high 

angle of attack range, and becomes more visible if no merging scheme between neighboring 

vortices is implemented. Use of a 1" order Euler scheme for time integration shows more 

clearly this kind of instability than a qth order Runge-Kutta method. 

The effect of secondary vortices becomes significant in the range of small angle of attack 

and large flap deflection angle. The present study cannot deschbe this phenomenon which 

is due to viscous effects. A possible way of accounting for this problem is to interact 

between the inviscid problem and boundary layer model which can predict 3-D boundary 

layer separation. Such viscous/inviscid approach would constitute an interesting extension 

of this work. 

A maximum value of flap deflection exists, beyond which this analysis becomes invalid. 

Beyond this limit full 3-D solutions of the equations of motion would be required. 

The present study gives a good definition of shear layers, which current Navier-Stoke's 

solvers cannot provide since an impractically fine grid distribution would be required to 
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capture such discontinuity surfaces. This work can provide some insight in supplying initial 

grid distributions to Navier-Stoke’s solvers, thereby reducing computational cost. 

A recent study on the structures of rolled-up shear layers48 has shown that the vortical 

system could be stabilized by altering the spacing of coherent structure in shear layers. 

Such a concept for stabilizing the rolled-up shear layers could be further explored with the 

methodology developed here. 
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(a) Delta wing coordinate system 

(b) Cross-flow plane 

Fig. 2 
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Fig. 3 Experimental visualization of the rolled-up shear layer, taken from Ref. 25. 
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(a) General case 

(b) Fixing separation angle, 0, = 0 

(c) New vortex paition 

Fig. 5 Flow around separation point 
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(a) initial state (b) after some time s tep  

Fig. 14 Numerical diffusion illustrated by discrete simulation of Rankine vortex, taken from 

Ref. 36. 
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(a) Rolled-up shear layer without core model 

I 

(b) Rolled-up shear layer with core model, rotation angle is 2 . 5 ~  

Fig. 16 Effect of core model on shear layer 
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c*** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

C VORTEX PANEL METHOD FOR FLAT DELTA WING WITH FLAP IN CONICAL FLOW 
C MODIFIED FOR SYMMETRIC CASE 

COMMON/OPTION/INSTEP,NSTEP,NPLT, IFPL, IFFL, UMAX 

C CONSTRUCTING BODY SHAPE AND GEOMETRIC INFLUENC MATRIX * * * 
C 

CALL INITIAL 

C IFFL=O : NEW CASE, IFFL-1 : CONTINUEING CASE ----------- 
IF(IFFL.EQ.0) GO TO 111 
CALL INFO 

111 NNSTEPINSTEP-~O 

DO 100 ISTEP=INSTEP, NSTEP 
JJsISTEP 

C MATRIX INVERSION WITH THE INFLUENCE OF THE WAKE * * * 
C 

CALL SOLVE 

C FOR NEXT TIME STEP * * * 
C 

CALL MOVE (JJ) 

IFPLs2 : PLOT ....................... C IFPL=l : NO PLOT, 
IF(IFPL.EQ.1) GO TO 10 
IF(MOD(ISTEP,NPLT) .EQ.O) CALL VXPLOT 
IF(ISTEP.LT.NNSTEP) GO TO 10 
CALL PRESSURE (ISTEP) 

100 CONTIMJE 

C CALCULATION OF LIFT * * * 
C 

CALL LIFT 

C FOR PUTPUT PRINT * * * 
C 

CALL OUTPUT 

C FOR NEXT CONTINUING CASE * * * 
C 

CALL RESER 

STOP 
END 

IMPLICIT COMPLEX Z 

COMMON/CORE/VALl, VAL2 

COMMON/PARAMT/PI,DX, XO,ALPH, EPSL,AO, XK,DELTA 
COMMON/OPTION/INSTEP, NSTEP, NPLT, IFPL, IFFL, UMAX 
COMMON/WAKEGM/X,NWAKEL,NWAKEF, ZWAKE(150) ,GWAKE (150) ,WCORE (150) 
COMMON/GOMTRY/TGBD,NBODY,NBODYH, ZBODY(150) ,ZSBD(150) ,ALBD (150) 
COMMON/PRESSURE/CPL ( 150 1 , CPU ( 150 1 , CPML ( 150 1 , CPMU ( 150 

COMMON/MATRIX/NBC, AA ( 150,150 ) , AX ( 150 1 

COMMON/SVEL/XUL ( 150 1 , XUU ( 150 ) , XVL ( 150 , XW ( 15 O 1 
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100 

3000 

1100 

1200 

1300 

300 
888 

500 

600 
700 

1000 

800 
900 

* xwL(1.50) ,xWu(150) 
COMMON/LIFT/XLFTW, XLFTF, XDRGW, XDRGF, XLIFT, DRAG, RATIO 

EPSLD=EPSL*~~~./PI 
DELTAD=DELTA*~~~./PI 

ALPHD==ALPH*180./PI 

WRITE (40,100) ALPHD, EPSLD,DELTAD,DX,NSTEP, XO,VALl,VAL2 
FORMAT(///~OX,'ANGLE OF ATTACK = ',F10.4/ * 10X,"ALF APEX ANGLE = ',F10.4/ 

* lox, 'FLAP ANGLE - - ',F10.4/ 
* lox, ' DX = ',F10.4/ 
* lox, "STEP = ',15/ 
* lOX,'INTIAL SPAN POINT = ',F10.4/ 
* lOX,'CORE ANGLE IN RAD. =* ,F5.2,5X,F5.2) 

RRATIO=l. /TAN (ALPH) 
WRITE (40,3000) XLFTW,XLFTF, XDRGW, XDRGF, XLIFT, XDRAG, RATIO, RRATIO 
FORMAT(///lOX,'LIFT ON WING ',E10.3/ 
1 10X,'LIFT ON FLAP ',E10.3/ 
2 10X,'DRAG ON WING = ',E10.3/ 
3 10X,'DRAG ON FLAP = *,E10.3/ 
4 lox, ' TOTAL LIFT = ',E10.3/ 
5 lOX,'TOTAL DRAG = ',E10.3/ 
6 lox, ' LIFT-TO-DRAG RATIO ' , E10.3/ 
7 lOX,'LIFT-TO DRAG-RATIO W/O FLAP = ',E10.3////) 

WRITE(40,llOO) 
FORMAT(lOX,'PANEL NUMBER AND BOUND VORTEX STENGTH'/) 
DO 1200 I=l,NBODYH 
WRITE(40,1300)I,AX(I) ,CPL(I) ,XUL(I) ,XVL(I),XWL(I) * CPU(1) ,xVv(I) ,xw(I) ,xwv(I) 
FORMAT (3X, 13, E10.3,3X, 4 (E10.3,3X) /19X, 4 (E10.3,3X) ) 

DO 300 I=l,NBODYH 
CPP=-CP (I) 
WRITE(S0,888)CPP 
FORMAT (SX, F10.5) 

WRITE(40,SOO) 
FORMAT(///lOX,'VORTEX STRENGTH AND POSITION FOR LEADING EDGE'/) 
DO 600 I-1,NWAKEL 
IWL-2 * 1-1 
WRITE (40,700) 
FORMAT (SX, IS, 5X,E10.3,SX,2E10.3,SX,Elo .3) 

WRITE (40,1000) 
FORMAT(///lOX,'VORTEX STRENGTH AND POSITION FOR HINGE VORTEX'/) 
DO 800 I=l,NWAKEF 
IWF=2 * I 
WRITE ( 40,900) IWF, GWAKE ( IWE') , ZWAKE ( IWF) , WCORE ( IWF) 
FORMAT (SX, IS, E10.3, SX, 2E10 3, SX, E10 3) 

IWL, GWAKE (IWL) , ZWAKE (IWL) , WCORE (IWL) 

RETURN 
END 

SUBROUTINE RESER 

IMPLICIT COMPLEX 2 
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COMMON/SEPRAT/ISEP ( 2 ) ,  ZSSP (2) 

COMMON/WAKEGM/X, NWAKEL, NWAKEF, ZWAKE ( 150 , GWAKE ( 15 0 ) , WCORE ( 15 0 1 
I COMMON/PARAMT/PI,DX,XO,ALPH,EPSL,AO,XK,DELTA 

COMMON/GOMTRY/TGBD,NBODY,NBODYH,ZBODY~~SO~,ZSB~~~~O~,ALBD~~~O~ 
COMMON/MATRIX/NBC,AA(~~~, 150) , ~ ~ ( 1 5 0 )  

I COMMON/BODY/Ml, M2, M3, M4 

I IWL=2*NWAKEL-l 
IWF=2 *NWAKEF 
OPEN (UNIT=11, FILE='NFILE' , FORM='UNFORMATTED' , STATUS='NEW' ) 
WRITE (11) X, XK, TGBD, NBODY, NBODYH, NBC, NWAKEL, NWAKEF 

I 

I 
I WRITE(11) Ml,m,M3,M4 
I WRITE(11) (ISEP(1) ,ZSSP(I) ,1=1,2) 
1 WRITE(11) (ZBODY(1) ,ZSBD(I),ALBD(I) ,I=l,NBODY) 

WRITE(11) ((AA(I,J),J=1,15~),AX~I),I=l,lSO) 
WRITE(11) (GWAKE(1) ,ZWAKE(I),WCORE(I),I=l,IWL,2) 
WRITE(11) (GWAKE(1) ,ZWAKE(I),WCORE(I),Ia2,1WF,2) 
CLOSE (UNIT=11) 

SUBROUTINE INFO 

IMPLICIT COMPLEX 2 

COMMON/SEPRAT/ISEP (21, ZSSP ( 2 )  
COMMON/PARAMT/PI, DX, XO, ALPH, EPSL, AO, XK, DELTA 
COMMON/BODY/Ml,m,M3,M4 

I 

RETURN 
END 

I SUBROUTINE INITIAL 

IMPLICIT COMPLEX Z 

COMMON/CORE/VALl, VAL2 
COMMON/SEPRAT/ISEP (2), ZSSP (2) 
COMMON/PARAMT/PI,DX,XO,ALPH,EPSL,AO,XK,DELTA 
COMMON/TCSPLT/XMIN, YMIN, X M A X ,  YMAX 
COMMON/OPTION/ INSTEP, NSTEP, NPLT, IFPL, IFFL, UMAX 

COMMON/WAKEGM/X, NWAKEL, NWAKEF, ZWAKE ( 15 0 1 , GWAKE ( 15 0 1 , WCORE ( 150 1 

COMMON/PRESSURE/CPL(l5~),CPU(l~~),CPML(25O),CP~~l~~~ 

I 
I 

~ 

COMMON/MATRIX/NBC, AA ( 150,150 ) , AX ( 150 
COMMON/GOMTRY/TGBD,NBODY,NBODYH,ZBODY(~~~),ZSBD(~~~),ALBD(~~~) 
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DATA XMIN, XMAX, YMIN, !iMAX/O., 1.2, -0 .2,1. / 
PI-3.1415927 

C 

I 

C 

C 

~ C 

I C  
C 

C 

IF(IFFL.NE.0) GO TO 11 

DIFINE THE WALL POINTS * * * 
CALL BODY 

C DEFINE GEOMETRY INFLUENCE MATRIX * * * 
C 

CALL GEOINF 

.11 RETURN 
END 

SUBROUTINE BODY 
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C FORMATION OF BODY PANELS FOR THE FLAP PROBLEM ------------- 
C Nl,N2 : NUMBER OF PANELS ON MAIN WING AND FLAP 
C XK : RATIO OF MAIN WING AND TOTAL LENGTH . .  

IMPLICIT COMPLEX Z 

COMMON/BODY/Ml,M2,M3,M4 
COMMON/SEPRAT/ISEP (2), ZSSP (2) 
COMMON/GOMTRY/TGBD,NBODY,NBODYH,ZBODY(l~~),ZSBD(lSO),ALBD(l~~~ 
COMMON/PARAMT/PI,DX,XO,ALPH, EPSL,AO, XK, DELTA 

DATA Nl,N2/30, 25/ 
DATA XK/0.618/ 

C BODY COORDINATE FORMATION ................................. 
Ml=Nl+ 1 
M2=Ml+N2 
M3=M2+1 
M4=M3 +N1 
M5=M4+N2 
NBODY-MS 
NBODYHa (NBODY+l) /2 
ISEP (1) =M2 
ISEP (2) =M1 

ZBODY (M2) pCMPLX ( 0  ., -XK) + (CMPLX ( 0  ., -1. ) -CMPLX ( 0  ., -XK) ) 
ZBODY (M3 1 =CONJG (ZBODY (M2 1 ) 
D I S=XK/ FLOAT (N1) 
ZDISl= (ZBODY (M2 ) -CMPLX ( 0  ., -XK) ) /FLOAT (N2) 
ZDISZ=(CMPLX(O. ,XK) -ZBODY (M3) ) /FLOAT (N2) 

* *CEXP (-CMPLX (0 ., 1. ) *DELTA) 

CC LOWER PANELS .............................. 
DO 200 I=l,Ml 

YY=-DIS*FLOAT (1-1) 
ZBODY (I) =CMPLX (0 ., YY) 
DO 300 I~Ml+l,M2-1 
ZBODY (I) =ZBODY (Ml) +ZDISl*FLOAT (I-M1) 

200 

300 cc ............................................. 
CC UPPER PANELS .............................. 

DO 400 I-M3,M4 
ZBODY (I) -2BODY (M2) +ZDIS2*FLOAT (I-M3) 
DO 500 I=M4+1,M5 
YY-XK-DIS*FLOAT (I-M4) 
ZBODY (I) =CMPLX (0 . .  YY) 

400 

5 0 0  

ZSSP (2 j =ZSBD (Mi j 

CC DEFINE PANEL SLOPE AND LENGTH----------------- 
DO 300 Ks1,NBODYH-1 

ZZ=ZBODY (1+K) -ZBODY (K) 
ALBD (K) =CABS (ZZ) 

300 ZSBD (K) =ZZ/ALBD (K) 
DO 400 K=NBODY,NBODYH+l, -1 

KK=l+MOD (K+NBODY, NBODY) 
ZZ=ZBODY (K) -ZBODY (KK) 
ALBD (K-1) -CABS (ZZ) 

400 ZSBD (~-1) =ZZ/ALBD (~-1) 
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RETURN 
END 

C 

I C 
C 

I 
I cc 

SUBROUTINE GEOINF 

SUBROUTINE FOR CONSTRUCTING THE GEOMETRIC INFLUENCE COEFFICIENTS 

IMPLICIT COMPLEX 2 

COMMON/PARAMT/PI, DX, Xo, ALPH, EPSL, AO, XK,DELTA 
COMMON/MATRIX/NBC, AA ( 15 0,15 0 ) , AX ( 15 0 ) 
COMMON/GOMTRY/TGBD,NBODY,NBODYH,ZBODY(l50) ,ZSBD(lSO) ,ALBD(150) 

FIRST ROW OF THE MATRIX WHICH REPRESENTS TOTAL BOUND VORTEX 
STRENGTH EQUALS TOTAL WAKE STRENGTH ....................... 

100 AJMl=AJ 
J=NBODYH 
AA(l,J)=O.S*AJMl 

CC ............................................. 

J=NBODY+1 
AA(1,  J)-0. 

63 



ELSE 
ZMID==O -5 * ( ZBODY (NBODY) +ZBODY ( 1) 
DIJH=ALOG(CABS (ZI-ZMID) ) 
DIJPsALOG (CABS (ZI-ZBODY (NBODY) ) ) 
TIJM==AJ/6.*(2.*DIJH+DIJP) 
'EbJDIF 
J=O 

CC LOWER PART----------------------------------- 
DO 400 JJ=l,NBODYH-l 

J=J+1 
JPl=l+J 
AJmALBD (JJ) 
IF (JP 1. EQ -11) 
ALOGJsALOG (AJ) 
RIJ=AJ* (ALOGJ-1. ) 
TIJ=O .5*AJ* (ALOGJ-1.5) 
ELSE IF(JJ.EQ.11) THEN 
ALOGJ=ALOG (AJ) 
RIJ=AJ* (ALOGJ-1. ) 
TIJ=0.5*AJ*(ALOGJ-O.5) 
ELSE 
ZMID-0 .5* (ZBODY (JJ) +ZBODY (JP1) ) 
DIJ -ALOG(CABS (ZI-ZBODY (JJ) ) ) 
DIJP-ALOG (CABS (ZI-ZBODY (JP1) ) ) 
DIJH=ALOG (CABS (ZI-ZMID) ) 
RI J=AJ/ 6. * (DI J+4. *DIJH+DIJP) 
TIJ=AJJ~. * ( 2. *DIJH+DIJP) 
ENDIF 
AA (I, J) SO. S/PI* (RIJ-TIJ+TIJM) 

THEN 

400 TIJM=TIJ 

J=NBODYH 
JJ=NBODYH 
AJmALBD (JJ-1) 
ALOGJsALOG (AJ) 
IF(II.EQ.JJ) THEN 
AA ( I, J) =O .5*0.5/P I* (ALOGJ-1.5) *AJ 
ELSE IF(II.EQ.JJ-1) THEN 
AA ( I, J) -0.5*0. S/PI* (ALOGJ-0.5) *AJ 
ELSE 
ZMID=O. 5* (ZBODY (NBODYH-1) +ZBODY (NBODYH) ) 
DIJ=ALOG(CABS (ZI-ZBODY (NBODYH) ) ) 
DIJHmALOG (CABS (ZI-ZMID) ) 
AA(1, J) PO. 5*AJ* (2. *DIJH+DIJ) / (6. *PI) 
ENDIF cc ............................................. 

CC UPPER PART----------------------------------- 
JJJ-NBODY-1 
AJ=ALBD (JJJ) 
IF ( 11. EQ .l) THEN 
ALOGJ=ALOG (AJ) 
TIJM=O.S*AJ* (ALOGJ-0 .5) 
ELSE IF(II.EQ.NBODY) THEN 
ALOGJ=ALOG (AJ) 
TIJM=O .5*AJ* (ALOGJ-1.5) 
ELSE 
ZMID=O .5 * ( ZBODY (NBODY) +ZBODY ( 1) ) 
DIJ=ALOG (CABS (21-ZBODY (NBODY) ) ) 
DIJH=ALOG(CABS (ZI-ZMID) ) 
TIJM=AJ/6.*(2.*DIJH+DIJ) 
ENDIF 
J-NBODY +1 
DO 500 JJ=NBODY,NBODYH+2, -1 
J= J- 1 
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JM1= JJ- 1 
J J J-J J- 1 
AJ-ALBD (JJJ) 
IF(JMl.EQ.11) THEN 
ALOGJ=ALOG (AJ) 

' ' RIJ=AJ* (ALOGJ-1. ) 
TIJ=O.S*AJ*(ALOGJ-1.5) 
ELSE IF (JJ. EQ -11) THEN 
ALOGJzALOG (AJ) 
RIJ=AJ* (ALOGJ-1. ) 
TIJ=O.S*AJ*(ALOGJ-O.5) 
ELSE 
ZMID=O.5* (ZBODY (JJ) +ZBODY (JM1) ) 
DIJ=ALOG(CABS (ZI-ZBODY (JJ) ) ) 
DIJM=ALOG(CABS (ZI-ZBODY (JM1) ) ) 
DIJH=ALOG(CABS (ZI-ZMID) ) 
RIJ=AJ/6.*(DIJ+4.*DIJH+DIJM) 
TIJ=AJ/C. * ( 2 .  *DIJH+DIJM) 
ENDIF 
AA(I, J)=O.S/PI* (RIJ-TIJ+TIJM) 

500 TIJMsTIJ 

J=NBODY H+ 1 
JJ=NBODYH+l 
JPl=JJ+l 
JJJ=NBODYH+l 
AJ=ALBD (JJJ) 
IF(JJ.EQ.11) THEN 
AA(1, J)=O.S*O.5/PI*(ALOGJ-l.5) *AJ 
ELSE IF(II.EQ.JP1) THEN 
AA (I, J) - 0 . 5  * O f  5 / P  I* (ALOGJ-0 - 5 )  *AJ 
ELSE 
ZMID=O .5* (ZBODY (JJ) +ZBODY (JP1) ) 
DIJ=ALOG(CABS (ZI-ZBODY(JJ))) 
DIJH=ALOG(CABS (ZI-ZMID) ) 
AA (I, J) -0 . 5*AJ* (2. *DIJH+DIJ) / ( 6. *PI) 
ENDIF cc .............................................. 

300 CONTINUE 

.............................................................. 
RETURN 
END SUBROUTINE SOLVE 

THIS SUBROUTINE CACULATES THE STRENGTH OF BOUND VORTICES -- 
IMPLICIT COMPLEX 2 

COMMON/PARAMT/PI,DX, xO, ALPH, EPSL,AO, XK, T, DELTA 
COMMON/MATRIX/NBC, AA ( 150,150 , AX ( 150 ) 
COMMON/WAKEGM/X,NL,NWAKEF, ZWAKE (150) ,GWAKE (150) ,WCORE (150) 
COMMON/GOMTRY/TGBD,NBODY,NBODYH,ZBODY(lSO) ,ZSBD(150) ,ALBD(lSO) 

-PLY THE B.C. FOR THE WAKE INFLUENCE------------------------ 
RIGHT HAND SIDE OF THE MATRICES------------------------------ 

I=1 
AX (I) =TGBD 
DO 100 II=l,NBODY 
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I=I+1 
Z I=ZBODY ( I I ) 
PSI=O. 
IWKL=NWAKEL*2-1 
IWKE'=NWAKEF * 2 
DO 120 J-1, IWKL, 2 
ZCzCONJG (ZWAKE (J) ) 

120 PSI-PSI-GWAKE (J) *ALOG (CABS (21-ZWAKE (J) ) ) * +GWAKE (J) *ALOG (CABS (21-ZC) 
DO 121 J=2,IWKF,2 

PSIsPSI-GWAKE (J) *ALOG (CABS (21-ZWAKE (J) 
+GWAKE (J) *ALOG (CABS (21-ZC) ) 

ZC-CONJG (ZWAKE (J) 1 
121 * 
100 AX(I)==~.~/PI*PSI-AIMAG(ZI) *SIN(ALPH) c ............................................................. 
C SOLVE FOR THE VORTEX STRENGTH OF THE BOUNDED VORTICES-------- 

DO 300 JI1,NBC-1 
DO 300 I=J+l,NBC 

300 AX(I)=AX(I) -AX(J) *=(I, J) 
DO 320 JJ=l,NBC-l 

J=NBC+l-JJ 
AX(J)-AX(J) *AA(J, J) 
DO 320 I=l,J-1 

320 AX(I)=AX(I)-AX(J) *=(I, J) 
AX(l)=AX(l) *AA(l, 1) c ............................................................. 
RETURN 
END 
SUBROUTINE MOVE (ISTEP) 

C NEW POSITION OF VORTICES AND NEW VORTEX GENERATION -------- 
IMPLICIT COMPLEX 2 

COMMON/WAKVEL/ZVEL (400 )  
COMMON/SEPRAT/ISEP (2), ZSSP (2) 
COMMON/PARAMT/PI,DX, XO,ALPH, EPSL,AO,XK, T,DELTA 
COMMON/TCSPLT/XMIN, YMIN, ][MAX, YMAX 
COMMON/OPTION/INSTEP, NSTEP, NPLT, IFPL, IFFL, UMAX 
COMMON/MATRIX/NBC, AA ( 150,150 ) , AX ( 150 ) 
COMMON/WAKEGM/X,NwAKEL,NWAKEF, ZWAKE(1SO) ,GWAKE(150) ,WCORE(lSO) 
COMMON/GOMTRY/TGBD,NBODY,NBODYH,ZBODY (m), ZSBD(15O) ,ALBD (150) 

C LIMIT THE BOUND VORTICITY STRENGTH NEAR THE TIPS------------- 

'11 IF(ABS(AX(1)) .GT.UMAX) AX(I)=SIGN(UMAX,AX(I)) 
DO 11 I=ISEP (1) -3, ISEP (1) +3 

Y 

C FOR THE VORTEX WAKE------------------------------------------ 
C PUT NEW VORTEX PANNELS AT THE SEPARATION POINTS-------------- 
CC FOR LEADING EDGE VORTEX SYSTEM ------------ 

JK==ISEP (1) 
CALL CRSVEL (2, JX, VL, VU, WL, W) 
VM- (VL+W) /2. 
WM- (WL+wu) /2. 
VSEP=SQRT(VM**2+WM**2) 
NwAKEL=NwAKEL+l 
IWKL=2*NWAKEL-l 
ASIGN-SIGN(l.,AX(ISEP(l) 1 )  

66 



cc 
cc 

934 

280 

cc 

FOR HINGE VORTEX SYSTEM ------------------- 
IF(ISTEP.LE.700) GO TO 1000 
IF(DELTA.EQ.0.) GO TO 1000 
ASIGNISIGN(1. ,AX(ISEP (2) ) ) 
IF(NWAKEF.GE.1) GO TO 280 
JK=ISEP (2) 
CALL CRSVEL(?, JK,VL,W,WL,WU) 
vM= (W+VL) /2. 
wM= (Wu+WL) /2. 
VSEP==SQRT(VM**2+WM**2) 
IF(WM.LT.0.) GO TO 934 
ZZtZBODY (ISEP (2) ) -2BODY (ISEP 

GO TO 280 
ZZPZBODY (ISEP (2) ) -ZBODY (ISEP 

NWAKEF-NWAKEF+l 
IWKF=NWAKEF*2 

ZSSP (2) =zz/cABs (22) 

ZSSP (2) =zz/cABs (ZZ) 

2) +1) 

GWAKE(1WKF) =O.S*ASIGN*DX*ABS (AX(1SEP (2 )  ) ) **2/ (X*TAN(EPSL) ) 
ZWAKE(IWKF)-ZBODY(ISEP(2))+DX*(ZSSP(2) *U(ISEP(2)) /2.) 

WCORE ( IWKF) =A0 
* / (X*TAN (EPSL) ) 

............................................. 

C UPDATE THE VORTEX POSITIONS USING FtK-4TH ORDER METHODS * * * 
1000 CALL RUKU4 
C 

WFtITE ( 6, *) 
WRITE(6,*) AX(ISEP(l)),AX(ISEP(2)) 

ISTEP, NWAKEL, NWAKEF, GWAKE (1) , ZWAKE (1) , GWAKE (2) , ZWAKE (2) 

C UPDATE THE VORTEX STRENGTH AND VORTEX POSITIONS-------------- 
SLNGTH=~.+DX/X 
DO 210 II=l,NWAKEL 

I=II*2-1 
ZWAKE (I) =ZWAKE (I) /SLNGTH 
GWAKE (I) =GWAKE (I) /SLNGTH 
WCORE (I) =WCORE (I) /SQRT (SLNGTH) 

210 CONTINUE 

DO 211 II=l,NWAKEF 
I=II*2 
ZWAKE (I)=ZWAKE (I) /SLNGTH 
GWAKE (I) -GWAKE (I) /SLNGTH 
w c o ~ ~ ( ~ ) = w c o ~ ~ ( ~ )  /SQRT(SLNGTH) 

211 CONTINUE 

X=X+DX 

C CHECK THE SURFACE MERGE * * 
CALL SMERGE (NNWL,NNWF) 
NWAKEL=NNWL 
NWAKEF="WF 

C 

C CORE MERGING * * * 
CALL CORE (NWL,NwF) 
NWAKEL=NWL 
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NWAKEF-NWF 

VORTEX MERGING * * * 
CALL MERGE (ISTEP, NWL, NWF) 
NWAKELSNWL 
NWAKEFoNWF 

RETURN 
END 

SUBROUTINE RUKU4 

SCHEME FOR THE FOURTH ORDER OF RUNGE-KUTTA METHODS************* 

IMPLICIT COMPLEX Z 

COMMON/WALVEL/ZVL (150) 

COMMON/WAKEGM/X, NWAKEL, NWAKEF, ZWAKE ( 150 , GWAKE ( is o , WCORE ( 1 so 
COMMON/PARAMT/PI,DX,XO,ALPH,EPSL,AO, XK,T,DELTA 

COMMON/RKQ/ZWP (Ed), ZWPP (lso), ZWPP (150) 

DIMENSION ZVLP (150) , ZVLPP (150) ,ZVLPPP (150) 
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DO ‘401 J=l,NWAKEF 
II=2*J 
ZVLPPP (11) =ZVPPP (ZWPPP (11) 

DO 500 J=l,NWAKEL 
11-2 * J-1 

401 

500 ZWAKE(II)-ZWAKE(II)+(ZVL(II)+2.*ZvLp(II) * +2. *ZVLPP (11) +ZVLPPP (11) ) *DX/ (6. *X*TAN (EPSL) ) 

RETURN 
END 

COMPLEX FUNCTION ZV(Z1) 

C CALCULATION OF INDUCED VELOCITY BY BOUND AND WAKE VORTICES 

PARAMETER ZIMG434PLX (0 ., 1.) 
IMPLICIT COMPLEX (Z, V) 

COMMON/PARAMT/PI,DX,X~,ALPH, EPSL,A~,XK,DELTA 
COMMON/MATRIX/NBC, AA ( 15 0,150 ) , AX ( 15 0 ) 
COMMON/WAKEGM/X,NWAKEL,NWAKEF,ZWAKE(lSo) ,GWAKE(lSO) ,WCORE(lSO) 
COMMON/GOMTRY/TGBD, NBODY, NBODYH, ZBODY ( 150 ) , ZSBD (150 ) , ALBD ( 150 ) 
VIP0 * 

C INDUCE VELOCITY BY THE BOUNDED VORTEX PANELS---------------- 
FOO=GFUN(ZI,ZBODY(1) ,AO) 
DO 100 IP1,NBODYH-1 

IPl=I+l 
Z12=0.5* (ZBODY (I) +ZBODY (IP1) ) 
F12mGFUN (ZI, 212, AO) 
FP1-GFUN(ZI,ZBODY(IPl) ,AO) 
AI =ALBD (I) 
HO=FO0+4.*F12+FPl 
H1= ( 2. *F12+FP1) *AI 
H2= ( F12+FPl) *AI**2 
ZOO-ZI-ZBODY (I) 
ZP=ZIMG* (-HO*ZOO+Hl*ZSBD (I) ) *AI/6. 
ZQ=ZIMG* (-Hl*ZOO+H2*ZSBD (I) /6. 
VI-VI+Ax(I)*ZP+(Ax(IPl)-AX(I)) *ZQ 

100 F00zFP1 

FOO==GFUN (ZI, ZBODY (1) , AO) 
DO 200 IzNBODY, NBODYH+1, -1 

IPl=l+MOD (I+NBODY,NBODY) 
21210. 5* (ZBODY (I) +ZBODY (IP1) ) 
F12=GFUN ( ZI ,212, A0 ) 
FPlnGFUN(Z1, ZBODY (I) ,A01 
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AI=ALBD ( I - 1 ) 
HO=F00+4.*F12+FP1 
H1= (2. *F12+FP1) *AI 
H2= (F12+FP1) *AI**2 
ZOO=ZI-ZBODY (IP1) 
‘ZP==ZIMG*(-HO*ZOO+Hl*ZSBD(I-1))*AI/6. 
ZQ-ZIMG*(-H1*Z00+H2*ZSBD(I-1))/6. 
VI=VI+AX (IP1) *ZP+ (AX (I) -AX (IP1) ) *ZQ 

200 F00=FP1 c ............................................................. 
C INDUCED VELOCITY BY THE FREE VORTEX--------------------------- 

300 

,301 
C 

C 

C 

C 

C 

C 

C 

DO 300 J=l,NWAKEL 
1112 * J-1 
RsWCORE ( I I) 
ZC=CONJG (ZWAKE (11) ) 
VI=VI-GWAKE(I1) *GFUN(ZI,ZWAKE(II) ,R)*ZIMG*(ZI-ZWAKE(I1)) 

* +GWAKE(II) *GFUN(ZI,ZC,R) *ZIMG*(ZI-ZC) 
CONTINUE 

DO 301 Jm1,NWAKEF 
II=2*J 
R==WCORE ( I I ) 
ZC=CONJG (ZWAKE (11) ) 
VI=VI-GWAKE(I1) *GFUN(ZI,ZWAKE(II) ,R) *ZIMG* (ZI-ZWAKE(I1) ) * +GWAKE(II) *GFUN(ZI, ZC,R) *ZIMG* (ZI-ZC) 

CONTINUE ............................................................. 

RETURN 
END 

FUNCTION GFUN(ZI,ZJ,R) 

CALCULATION OF INDECED VELOCITY BETWEEN TWO VORTICES ------ 
IMPLICIT COMPLEX 2 

COMMON/PARAMT/PI,DX, XO,ALPH,EPSL,AO,XK,T,DELTA 

AL=CABS (ZI-ZJ) 
IF(AL.LT.R) THEN 
X= (AL/R) **2 
GFUN-3 ./R**2* (l.+X* (X/3 .-1.) ) 
ELSE 
GFUN=l./AL**2 
ENDIF 

RETURN 
END 

COMPLEX FUNCTION ZVP (ZPI) 

CALCULATION OF VELOCITY BY BOUND AND WAKE VORTICES -------- 
PARAMETER ZIMG=CMpLX (0 ., 1.) 
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C 

IMPLICIT COMPLEX (2, V) 

COMMON/PARAMT/PI,DX, XO,ALPH, EPSL,AO,XK, T,DELTA 
COMMON/MATRIX/NBC,I(lSO, 150) ,AX(150) 
COMMON/WAKEGM/X, NWAKEL, NWAKEF, ZWAKE ( 150 ) , GWAKE ( 150 ) , WCORE ( 150 1 
COMMON/GOMTRY/TGBD, NBODY, NBODYH, ZBODY ( 150) , ZSBD ( 150) , ALBD ( 150) 
COMMON/~4/ZwP(15O),ZwPP(lSO),Z~PP(l5~) 

VPI==O * 

INDUCE VELOCITY BY THE BOUNDED VORTEX PANELS----------------- 
FOo=GFUN(ZPI,ZBODY(l) ,AO) 
DO 100 I-1,NBODYH-1 

IPl=l+MOD (I+NBODY,NBODY) 
Z12=0.5* (ZBODY(1) +ZBODY (IP1) ) 
FlZ=GFUN ( ZPI , Z 12, A0 ) 
FPl=GFUN(ZPI,ZBODY (IP1) ,AO) 
AI =ALBD(I) 
HO=F00+4.*F12+FPl 
H1= ( 2. *F12+FP1) *AI 
H2= ( F12+FPl) *AI**2 
ZOO-ZPI-ZBODY (I) 
ZP~ZIMG*(-HO*ZOO+Hl*ZSBD(I))*AI/6. 
ZQ=ZIMG*(-Hl*ZOo+H2*ZSBD(I))/6. 
VPI=VPI+AX(I) *ZP+(AX(IPl)-AX(I)) *ZQ 

100 F00-FP1 

200 
C 

FO 0-GFUN ( ZP I, ZBODY ( 1 ) , A0 ) 
DO 200 IPNBODY, NBODYH+l, -1 

IPl=l+MOD (I+NBODY,NBODY) 
212=O.S*(2BODY(I)+2BODY(IPl)) 
Fl 2=GFUN ( ZP I, 2 12, A0 ) 
FPl=GFUN(ZPI, ZBODY (I) ,A01 
AI-ALBD (1-1) 
HO=F00+4.*F12+FPl 
H1= (2. *F12+FPl) *AI 
H2= (F12+FP1) *AI**2 
ZO 0-ZP I-ZBODY ( IP 1) 
ZP~ZIMG*(-HO*ZOO+Hl*ZSBD(1-1))*AI/6. 
ZQ=ZIMG* (-Hl*ZOO+H2*ZSBD (1-1) ) /6. 
VPI=VPI+AX (IP1) *ZP+ (AX (I) -AX (IP1) ) *ZQ 

FOO=FPl ............................................................. 
C INDUCED VELOCITY BY THE FREE VORTEX--------------------------- 

DO 300 J=l,NWAKEL 
. II=J*2-1 
R-WCORE ( I I) 
ZC=CONJG ( ZWP (11) 1 
VPI=VPI-GWAKE(I1) *GFUN(ZPI,ZWP(II) ,R) *ZIMG*(ZPI-ZWP(I1)) * +GWAKE (11) *GFUN(ZPI, ZC,R) *ZIMG* (ZPI-ZC) 

300 CONTINUE 

DO 301 J-1,NW-F 
II=J*2 
R=WCORE ( I I) 
ZC=CONJG(ZWP (11) 
VPI=VPI-GWAKE(II) *GFUN(ZPI,ZWP(II) ,R) *ZIMG*(ZPI-ZWP(I1)) * +GWAKE ( 11) *GFUN (ZPI, ZC, R )  *ZIMG* (ZPI-ZC) 

301 CONTINUE ' c ............................................................. 
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I RETURN 
END 

COMPLEX FUNCTION ZVPP (ZPPI) 

1 C THIS SUBROUTINE CACULATE THE VELOCITY DUE TO BODY PANNEL -- 
I PARAMETER ZIMGaCMPLX (0 ., 1.1 

IMPLICIT COMPLEX (Z,V) 

COMMON/PARAMT/PI,DX,XO,ALPH, EPSL,AO,XK,T,DELTA 

~ 

~ 

I 

I 

COMMON/MATRIX/NBC, AA ( 150,150 ) , Ax ( 150 1 
COMMON/WAKEGM/X,NWAKEL,NWAKEF, ZWAKE (150) ,GWAKE (150) ,WCORE (iso) 
COMMON/GOMTRY /TGBD, NBODY, NBODYH, ZBODY ( 15 0 1 , ZSBD ( 150 1 , ALBD ( 15 0 1 
COMMON/RK4/ZWP (150), ZWPP (150) ,ZWPPP (150) 

I VPP I=O . 
C INDUCE VELOCITY BY THE BOUNDED VORTEX PANELS----------------- 

FOO=GFUN (ZPPI, ZBODY ( 1) , AO) 
DO 100 I=l,NBODYH-1 

IPl=l+MOD (I+NBODY, NBODY) 
2 12 = 0 - 5  * ( ZBODY ( I ) +ZBODY ( IP 1 
F12=GFUN (ZPPI, 212, A0 ) 

AI =ALBD (I) 
HO=F00+4.*F12+FPl 
H1= ( 2. *F12+FP1) *AI 
H2= ( FlZ+FPl) *AI**2 
ZOOmZPPI-ZBODY (I) 

ZQ=ZIMG*(-Hl*ZOO+H2*ZSBD(I))/6. 
VPPI=VPPI+Ax(I) *ZP+(Ax(IPl) -AX(I)) *ZQ 

FP~=GFUN(ZPPI,ZBODY(IP~) ,AO) 

ZP=ZIMG*(-HO*ZOO+H~*ZSBD(I))*AI/~. 

100 FOO=FPl 

FOOmGFUN (ZPPI , ZBODY ( 1 ) , A0 ) 
DO 200 I=NBODY,NBODYH+l, -1 

i IP1=1+MOD (I+NBODY, NBODY) 
Zl2-0.5*(ZBODY(I)+ZBODY(IP1)) 
F123GFUN (ZPPI, 2 12, A0 ) 
FP13GFUN (ZPPI, ZBODY (I) , AO) 
AI=ALBD (1-1) 
HO=F00+4.*F12+FPl 
H l =  ( 2 .  *F12+FP1) *AI 
H2= (F12+FP1) *AI**2 
ZO O=ZPP I-ZBODY ( IP1) 
ZP=ZIMG*(-HO*ZOO+H1*ZSBD(I-l))*AI/6. 
ZQ=ZIMG* (-Hl*ZOO+H2*ZSBD(I-l) ) /6. 
VPPI=VPPI+Ax(IPl) *ZP+(Ax(I)-Ax(IPl) )*ZQ 

~ 

I , 
! 
1 200 FOO=FPl c ^------------------------------------------------------------ 

C INDUCED VELOCITY BY THE FREE VORTEX----------------------- 
I DO 300 J=l,NWAKEL 

~ 

II=J*2-1 
R=WCORE ( I I ) 
ZC=CONJG (ZWPP ( I I ) ) 1 
VPPI-VPPI-GWAKE(I1) *GFUN(ZPPI,ZWPP (11) ,R) 

I * *ZIMG* (ZPPI-ZWPP (11) ) 

1 300 CONTINUE 
I * +GWAKE(II) *GFUN(ZPPI,ZC,R) *ZIMG* (ZPPI-ZC) 

DO 301 Jn1,NWAKEF 
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II=J*2 
R=WCORE ( I I ) 
ZC=CONJG(ZWPP (11) ) 
VPPI=W?PI-GWAKE(I1) *GFUN(ZPPI,ZWPP(II) ,R) 

* *ZIMG* (ZPPI-ZWPP (11) ) 
* . .  +GWAKE (11) *GFUN(ZPPI, ZC, R) *ZIMG* (ZPPI-ZC) 

301 CONTINUE c ......................................................... 
C ADD THE FREE STREAM VELOCITY----------------------------- 

ZVPP=O . S/PI*VPPI+CMPLX (1 ., 0. ) *SIN (ALPH) 

RETURN 
END 

COMPLEX FUNCTION ZVPPP (ZPPPI) 

C THIS SUBROUTINE CACULATE THE VELOCITY DUE TO BODY PANNEL -- 
PARAMETER ZIMGI.CMpLX(O.,l.) 

IMPLICIT COMPLEX (2, V) 

COMMON/PARAMT/PI,DX,XO,ALPH, EPSL,AO,XK,T, DELTA 
COMMON/MATRIX/NBC, AA ( 150,150 ) , AX ( 150 ) 
COMMON/WAKEGM/X,NWAKEL,NWAKEF, ZWAKE(150) ,GWAKE (150) ,WCORE(150) 

COMMON/RK4/ZWP (150), ZWPP (150), ZWPPP (150) 
COMMON/GOMTRY/TGBD, NBODY, NBODYH, ZBODY ( 15 0 1 , ZSBD ( 15 0 1 , ALBD ( 15 0 1 

, 

VPPPI=O. 

C INDUCE VELOCITY BY THE BOUNDED VORTEX PANELS----------------- 
FOOPGFUN(ZPPP1,ZBODY (1) ,AO) 
DO 100 II1,NBODYH-1 

IPl=l+MOD (I+NBODY, NBODY) 
Z12=0.5* (ZBODY (I) +ZBODY (IP1) ) 
Fl2=GFUN(ZPPPI,Z12,AO) 
FP l=GFUN ( ZPPP I, ZBODY ( IP 1 ) , A0 ) 
AI =ALBD(I) 
HO=F00+4.*F12+FPl 
H1= ( 2. *F12+FP1) *AI 
H2= ( F12+FP1) *AI**2 
ZOO=ZPPPI-ZBODY (I) 
ZP=ZIMG*(-HO*Z00+Hl*ZSBD(I))*AI/6. 
ZQ=ZIMG* (-Hl*ZOO+H2*ZSBD (I) ) /6. 
VPPPI=VPPPI+Ax(I) *ZP+(AX(IPl)-Ax(I)) *ZQ 

100 FOO=FPl 

FOO-GFUN(ZPPPI,ZBODY (1) ,AO) 
DO 200 I=NBODY,NBODYH+l, -1 

IPl=l+MOD (I+NBODY,NBODY) 
Zl2=0.5*(ZBODY(I)+ZBODY(IPl)) 
F12=GFUN(ZPPPI,212,AO) 
FPllGFUN (ZPPPI, ZBODY (I) , AO) 
AI-ALBD (1-1) 
HO=F00+4.*F12+FPl 
H1- (2. *F12+FP1) *AI 
H2= (F12+FP1) *AI**2 
ZOO=ZPPPI-ZBODY(IPl) 
ZP=ZIMG*(-HO*ZOO+H1*ZSBD(I-l))*AI/6. 
ZQ=ZIMG* (-Hl*ZOO+H2*ZSBD (1-1) ) /6. 
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C INDUCED VELOCITY BY THE FREE VORTEX--------------------------- 
DO' 300 JP1,NWAKEL 

I I=J*2-1 
R=WCORE ( I I ) 
ZC-CONJG (ZWPPP (11) 1 
VPPPI=VPPPI-GWAKE(I1) *GFUN(ZPPPI, ZWPPP (11) ,R) *ZIMG* * (ZPPPI-ZWPPP (11) ) 

* +GWAKE (11) *GFUN (ZPPPI, ZC, R) *ZIMG* (ZPPPI-ZC) 
300 CONTINUE 

DO 301 J=l,NWAKEF 
II=J*2 
R=WCORE ( I I ) 
ZC==CONJG(ZWPPP (11) ) 
W?PPI47PPPI-GWAKE(II) *GFUN(ZPPPI, ZWPPP (11) ,R) *ZIMG* 

* (ZPPPI-ZWPPP (11) ) * +GWAKE (11) *GFUN (ZPPPI, ZC, R) *ZIMG* (ZPPPI-ZC) 
301 CONTINUE 

RETURN 
END 

COMMON/SEPRAT/ISEP ( 2 ) ,  ZSSP (2) 
COMMON/PARAMT/PI,DX,XO,ALPH,EPSL,AO,XK,DELTA 
COMMON/W~GM/X,NWAKEL,NWAKEF,ZWAKE(lSO) ,GWAKE(15O) ,WCORE (150) 
COMMON/GOMTRY/TGBD,NBODY,NBODYH,ZBODY (150) ,ZSBD(150) ,ALBD(lSO) 

NWLPNWAKEL 
NWF=NWAKEF 

IF(NWL.LE.0.) GO TO 501 
J=1 

CHECK THE DISTANCE BETWEEN THE LEADING EDGE VORTICES AND THE SURFACE 
500 YY-AIMAG(ZWAKE(J)) 

XX=REAL (ZWAKE (J) ) 
IF(ABS(YY).GT.l.) GO TO 100 
IF(ABS(YY) .LE.=) GO TO 10 
RS=(AIMAG(ZBODY (ISEP (2) ) ) -AIMAG (ZBODY (ISEP (1) ) ) ) / 
1 
2 

(REAL (ZBODY (ISEP (2) ) ) +O -005-REAL (ZBODY (ISEP (1) 1 ) ) 
* (XX-REAL (ZBODY (ISEP (1) ) ) ) +AIMAG (ZBODY (ISEP (1) ) ) 

, 

IF(YY.LE.RS) GO TO 100 
GO TO 20 

10 IF (XX.GT.O.005) GO TO 100 c ............................................................. 
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100 5-J+2 
30 JK=NWL*2 -1 

IF(J.GT.JK) GO TO 400 
GO TO 500 

‘400 512 

C CHECK THE DISTANCE BETWEEN THE HINGE VORTICES AND THE SURFACE 
501 IF(NWF.LE.2) GO TO 401 

999 YYIAIMAG (ZWAKE (J) 1 
XX=REAL (ZWAKE (J) ) 
IF(ABSYY).GT.l.) GO TO 101 
IF(ABS(YY) .LE.=) GO TO 11 
RS=(AIMAG (ZBODY (ISEP (2) ) ) -AIMAG (ZBODY (ISEP (1) ) ) ) / 
1 
2 

(REAL (ZBODY (ISEP (2) ) ) +O .005-REAL (ZBODY (ISEP (1) ) ) ) 
* (XX-REAL (ZBODY (ISEP (1) ) ) ) +AIMAG (ZBODY (ISEP (1) ) ) 

IF(YY.LE.RS) GO TO 101 
GO TO 21 

11 IF (XX.GT.O.005) GO TO 101 c ............................................................. 
C READJUST THE VORTEX INDICES---------------------------------- 
21 IwF=NwF*2 

DO 301 K=J+2,IWF,2 
KKsK-2 
ZWAKE (KK) =ZWAKE (K) 
GWAKE (KK) PGWAKE (K) 
WCORE (KK) =WCORE (K) 

301 CONTINUE 
NWF=NwF-l 
GO TO 31 

101 J=J+2 
31 JKWWE”WF2-4 

IF(J.GE.JK) GO TO 401 
GO TO 999 

401 RETURN 
END 

SUBROUTINE MERGE (NWL, NWF) 

C SCHEME WHEN TWO VORITICES ARE TOO CLOSE THE THOSE ARE MERGED TO ONE 

IMPLICIT COMPLEX Z 

COMMON/PARAMT/PI,DX, XO,ALPH,EPSL,AO, XK,T,DELTA 
COMMON/WAKEGM/X, NWAKEL, NWAKEF, ZWAKE ( 4 0 0 )  , GWAKE ( 4 0 0 )  , WCORE (400 ) 
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NWL=NWAKEL 
NWF-NWAKEF 

IWL=NWL*2-1 
1WF=NWF*2 

C CHECK THE DISTANCE BETWEEN TWO VORTICES---------------------- 
100 K-1 
200 IF(J.EQ.K) GO TO 600. 

DISPCABS (ZWAKE (J) -ZWAKE (K) ) 
IF(DIS.LT.AO) GO TO 300 
GO TO 600 c ............................................................. 

C CLOSER THAN THE INITIAL CORE RADIUS THAN MERGED TO ONE------- 
300 ZWJ=(ZWAKE(J) *GWAKE(J) +ZWAKE(K) *GWAKE(K) ) / (GWAKE (J) +GWAKE(K) ) 

GWJPGWAKE (J) ffiWAKE (K) 
WCJ=ABS( (GWAKE(J)*WCORE(J)**3+GWAKE(K)*WCORE(K)**3) /GWJ)**(1./3.) 
ZWAKE (J) =ZWJ 
GWAKE (J) =GWJ 
WCORE (J) =WCJ c ........................................................... 

C REARRANGE THE INDICES-------------------------------------- 
DO 400 JN=K,IWL-2,2 

GWAKE (JN) =GWAKE (JN+2) 
ZWAKE (JN) -ZWAKE (JN+2) 
WCORE (JN) =wcoRE (JN+2) 

400 CONTINUE 
NWL=NWL-l 
IwL=NwL*2 - 1 
K=K+2 
GO TO 200 

600 IF(K.GE.IWL) GO TO SO0 

500 IF(NWF.LT.3) GO TO 3 
KK=2 
DIS=CABS(ZWAKE(J)-ZWAKE(KK)) 
IF(DIS.LT.AO) GO TO 1 
GO TO 2 
GWJIciwAKE (J) +GWAKE (KK) 
IF(GWJ.LT.0.) GO TO 6 
ZWJ=(ZWAKE(J) *GWAKE(J)+ZWAKE(KK) *GWAKE(KK)) A(GWAKE(J)+GWAKE(KK)) 
WCJ=ABS ( (GWAKE (J) *WCORE (J) **3+ 

ZWAKE (J) =ZWJ 
GWAKE (J) 4 W J  
WCORE (J) =WCJ 

* GWAKE (KK) *WCORE (KK) **3) /GWJ) ** (1. / 3 .  

........................................................... 
REARRANGE THE INDICES-------------------------------------- 

DO 5 JNmKK,  IWF-2,2 
GWAKE (JN) %WAKE (JN+2) 
ZWAKE (JN) ==%WAKE (JN+2) 
WCORE (JN) =wcoRE (JN+2) 

CONTINUE 
NWF=NWF-l 
IWF=NwJ?*2 
IF(KK.GE.IWF) GO TO 3 
KK=KK+2 
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GO TO 4 

6 

C 

C 

11 

3 
I 

C 

ZWJ- (ZWAKE (J) *GWAKE (J) +ZWAKE (KK) *GWAKE (KK) 1 / (GWAKE (J) +GWAKE (KK) ) 
WCJ-ABS ( (GWAKE (J) *WCORE (J) **3+ 

ZWAKE (KK) =ZWJ 
GWAKE (KK) =GWJ 
WCORE (KK) =WCJ 

* GWAKE (KK) *WCORE (KK) **3) /GWJ) ** (1. /3. ) 

REARRANGE THE INDICES-------------------------------------- 
DO 11 JNsJ, IWL-2,2 
GWAKE (JN) -GWAKE (JN+2 ) 
ZWAKE (JN) -2WAKE (JN+2) 
WCORE (JN) =wcoRE (JN+2) 

CONTINUE . 
NwL=NwL- 1 
IwL==NWL*2-1 

IF(J.GE.IWL) GO TO 700 
J= J+2 
GO TO 100 

C FOR THE FLAP HIGE VORTEX SYSTEM ......................... 
C700 

700 

900 
901 

903 

IF(ISTEP.LT.15) GO TO 906 

IF(NWF.LT.3) GO TO 906 

5-2 
K-2 
IF(J.EQ.K) GO TO 902 
DIS-CABS (ZWAKE (J) -2WAKE (K) ) 
IF(DIS.LT.AO) GO TO 903 
GO TO 902 
ZWJ= (ZWAKE (J) *GWAKE (J) +ZWAKE (K) *GWAKE (K) ) / (GWAKE (K) +GWAKE (J) ) 
GWJmGWAKE (J) +GWAKE (K) 
WCJ=ABS( (GWAKE(J) *WCORE(J) **3+GWAKE(K) *WCORE(K)**3) /GWJ) **(1./3.) 
ZWAKE (J) =ZWJ 
GWAKE (J) 4 W J  
WCORE (J) =WCJ 
DO 904 JN=K,IWF-2,2 

GWAKE (JN) =GWAKE (JN+2 ) 
ZWAKE (JN) =zwAKE (JN+2) 
WCORE (JN) =wcoRE (JN+2) 

CONTINUE 
NWF=NWF-l 
IwF=NWF*2 
IF(K.GE.IWF) GO TO 905 
K=K+2 
GO TO 901 
IF(J.GE.IW) GO TO 906 
5-J+2 
GO TO 900 

904 
I 

902 

905 

906 RETURN 
END 

I 
SUBROUTINE CORE (NWL, NWF) 

I 
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IMPLICIT COMPLEX Z 

COMMON/CORE/VALl , VAL2 
COMMON/SEPRAT/ISEP (21, ZSSP (2 )  

COMMON/WAKEGM/X,NWAKEL,NWAKEF,ZWAKE(lSO) ,GWAKE(150) ,WCORE(150) 
COMMON/PARAMT/PI,DX, XO,ALPH, EPSL, AO, XK, T,DELTA 

COMMON/GOMTRY/TGBD, NBODY, NBODYH, ZBODY ( 15 0 ) , ZSBD ( 15 0 ) , ALBD ( 15 0 ) 
NWL=NWAKEL 
NWF=NWAKEF 

IWL=NWL*2-1 
IWF=NWF*2 

BTA=O . 
ZZ-ZBODY ( ISEP (1) 1 
ZOsZWAKE (1) 
ZARCM=CLOG(ZZ-ZO) 
ARCM-AIMAG (ZARCM) 
N=O 

CALCULATE THE INCREMENT OF ROTATION ANGLE----------------- 
DO 100 J=IWL,3,-2 
II=J 
N=N+1 
ZJ=ZWAKE (J) 
ZARC4LOG (ZJ-ZO) 
ARC=AIMAG (ZARC) 
ARCI=ARC-ARCM 

C SHEET ROTATION IS LARGER THAN 2P1, THAN IT MERGE TO CORE----- 
VAL=VAGl*PI 
IF (ABS (BTA) .GT.ABS (VAL) ) GO TO 102 
IF(J.EQ.3) GO TO 500 
ZZ-ZJ 

100 ARCMIARC 
102 NWL==N 

ZCENl=O. 
GCOREl=O . 
COREl=O. 
DO 103 I=II,1,-2 
GcORE1=GcORElffiWAKE (I) 
ZCENl=ZCENlffiWAKE (I) *ZWAKE (I) 
COREl=COREl+GWAKE (I) *WCORE (I) **3 

GWAKE ( 1 ) -GCORE 1 
ZWAKE (1) =ZCENl/GCOREl 

103 CONTINUE 

WCORE ( 1) = (CORE1 /GcOREl) * * ( 1. / 3. ) c ......................................................... 
C RERRANGE THE INDICES OF THE VORTICES--------------------- 
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NIP (NWAKEL-NWL) *2 
IwL=NwL*2 - 1 
DO 104 JJ=3,IWL,2 
ZC1-ZWAKE (JJ+NI) 
GC1-GWAKE (JJ+NI) 
WClhWCORE (JJ+NI) 
ZWAKE (JJ) -ZC1 
GWAKE (JJ) =Gel 

104 WCORE (JJ) =WC1 
GO TO 600 

500 NWLmNWAKEL c .......................................................... 
C FOR E'- HINGE VORTEX SYSTEM ........................... 
600 IF(NWF.LT.3) GO TO 906 

BTA=O . 
ZZ=ZBODY (ISEP (2) ) 
zo=zwAKE (2 
ZARCMICLOG (ZZ-ZO) 
ARCMIAIMAG (ZARCM) 
N=O 

C CALCULATE THE INCREMENT OF ROTATION ANGLE----------------- 
DO 900 J=IWF,4,-2 
II=J 
N=N+1 
Z JsZWAKE (J) 
ZARC=CLOG (ZJ-ZO) 
ARC=AIMAG ( ZARC ) 
ARCI=ARC-ARcM 

IF(ABS(ARC1) .LT.PI) GO TO 901 
SGN=SIGN(l.,ARCI) 
ARCII-1. *SGN*ABS (ABS (ARCI) -2. *PI) 

901 BTA-BTA+ARCI . . c ................................................... 
C SHEET ROTATION IS LARGER THAN 2P1, THAN IT MERGE TO CORE----- 

VAL=-SN*VAL2*PI 
IF(ABS(BTA) .GT.ABS(VAL)) GO TO 902 
IF(J.EQ.4) GO TO 903 
ZZpZJ 

900 ARCMIARC 
902 NWF=N 

ZCENl=O . 
GCOREl=O. 
COREl=O. 
DO 904 I=II,2,-2 
GCoRE1=GcoRE1ffiwAKE (I) 
ZCENl=ZCENlffiWAKE (I) *ZWAKE (I) 
coRE1*coRE1ffiwAKE (I) *wcoRE (I) **3 

GWAKE (2) -GCOREl 
ZWAKE (2) =ZCENl/GCOREl 

904 CONTINUE 

WCORE (2) = (CORE1/GCORE1) ** (1. /3.) c ......................................................... . 

C REARRANGE THE INDICES OF THE VORTICES--------------------- 
NIz (NWAKEF-NWF) *2 
IwF==NWF*2 
DO 905 JJ=4,IWF,2 
ZCl=ZWAKE (JJ+NI) 
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GC1-GWAKE (JJ+NI) 
WCl=WCORE (JJ+NI) 
ZWAKE (JJ) =ZCl 
GWAKE (JJ) =GC1 

905 WCORE (JJ) =WCl 
GO TO 906 

.903 NWF-NWAKEF c ........................................................... 
1 906 RETURN 

END 

t SUBROUTINE PRESSURE(1STEP) 

IMPLICIT COMPLEX Z 
, 

C O M M O N / O P T I O N / I N S T E P , N S T E P , N P L T , I F P L , I F F L , ~  
COMMON/SEPRAT/ISEP (21, ZSSP (2) 
COMMON/PAR?LMT/PI,DX,XO,ALPH,EPSL,A~,XK,DELTA 
COMMON/GOMTRY/TGBD,NBODY,NBODYH,ZBODY(15O),ZSBD(l5O),ALBD(l50) 
COMMON/PRESSURE/CPL(lSO) ,CPU(lSO) ,CPML(lSO) ,CPMU(lSO) 
COMMON/SVEL/XUL(lSO) ,MN(150) r X V L ( 1 5 0 )  , m ( 1 5 0 )  t 

* XWL(150) ,XWU(150) 

DO 100 I=l,NBODYH 
KK=I 
IF(I.EQ.ISEP) GO TO 100 
CALL CRSVEL(l,KK,VL,W,WL,WV) 
CALL AXVEL (KK, VL, W, WL, WU, UL, UU) 
XUL (I) =COS (ALPH) +UL 
XUU ( I) +OS (ALPH) +W 
XVL (I) =vL 
Xw(I)=W 
xwL(I)=WL 
xwV(I)-WU 
CPL (I) ~ 1 .  - (COS (ALPH) +UL) **2-vL**2-WL**2 
CPML (I) =CPML (I) +CPL (I) 
CPU (I) ~ 1 .  - (COS (ALPH) +W) **2-W**2-W**2 
CPMU (I) =CPMU (1) +CPU (1) 

I 
i 

I 

~ 100 CONTINUE 

IF (ISTEP .NE .NSTEP) GO TO 200 
DO 300 I=l,NBODYH 

CPL(I)=CPML(I) /31. 
CPU (I) =CPMU (I) /31. 

300 WRITE(60, IOO)CPL(I) ,CPU(I) 
400 

200 RETURN 

FORMAT (lX, Ell. 4, SX, Ell. 4) 

END 

SUBROUTINE CRSVEL(IS, I,vL,W,WL,WU) 

IMPLICIT COMPLEX Z 

COMMON/SEPRAT/ISEP (2), ZSSP (2) 
COMMON/GOMTRY/TGBD, NBODY, NBODYH, ZBODY ( 150) , ZSBD ( 150 ) , ALBD ( 150 ) 
COMMON/MATRIX/NBC,AA(150,150) ,AX(150) 
COMMON/BODY/Ml, M2, M3, M4 

I 
I 

I 

: 21-ZBODY (I) 

1 

' C INDUCED VELOCITY BY BOUND VRTX PANELS AND WAKE ------------ 

80 



C 

C 

C 

C 

C 

C 

C 

cc 

RETURN 
END 

CALCULATION OF AXIAL VELOCITY ON WING SURFACE ------------- 
IMPLICIT COMPLEX Z 

COMMON/SEPRAT/ISEP (2), ZSSP (2 )  

COMMON/MATRIX/NBC, AA ( 15 0,15 0 ) , AX ( 150 1 
COMMON/GOMTRY/TGBD,NBODY,NBODYH,ZBODY(15~),ZSBD(l5O),ALBD(l50) 

COMMON/PARAMT/PI,DX, xO, ALPH, EPSL, AO, XK,DELTA 

COMMON/WAKEGM/X, NWAKEL, NWAKEF, ZWAKE ( 150 ) , GWAKE ( 15 0 ) , wCORE ( 15 0 1 

ZI=ZBODY (I) 

POTENTIAL BY FREE STREAM .................................. 
PHF=SIN(ALPH) *REAL(ZBODY (I)) 

POTENTIAL BY BOUND VORTEX PANELS .......................... 
BY LOWER PANELS ........................... 
PHBLL=O . 
PHBLU=O . 
DO 100 J=l,NBODYH-1 

JPl=J+l 
ZMID= (ZBODY (J) +ZBODY (JPl) ) /2 .  
AM=AIMAG (CLOG (21-ZMID) ) 
IF(1.EQ.J) GO TO 200 
A-AIMAG (CLOG (21-ZBODY (J) ) 
IF(I.EQ.JP1) GO TO 300 
AP=AIMAG(CLOG(ZI-ZBODY(JP1) ) ) 
GO TO 400 

200 Ai0 . 
AP=AIMAG(CLOG(ZI-ZBODY(JP1) ) ) 
GO TO 400 

300 AP=o . 
400 IF(A.GE.0.) GO TO 500 

AUG=A+2. *PI 
GO TO 600 

500 ARG=A 
600 IF(AM.GE.0.) GO TO 700 

ARGM=AM+2.*Pf 
GO TO 800 

700 ARGM=AM 
800 IF(AP.GE.0.) GO TO 900 

ARGP=AP+2.*PI 
GO TO 110 
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900 
110 

100 
cc 
cc 

ARGP-AP 
ARGL=ARG 
ARGML= ARGM 
ARGP Lo ARGP 
IF(1.LE.J) THEN 
'ARGU=ARGL+Z.*PI 
ARGMU=ARGML+2.*PI 
ARGPU=ARGPL+2.*PI 
ELSE IF(I.EQ.J+l) THEN 
ARGU=ARGL 
ARGMUIARGML 
ARGPU=ARGPL+2.*PI 
ELSE 
ARGU==ARGL 
ARGMU-ARGML 
ARGPU=ARGPL 
ENDIF 
PHBLLsPHBLL-AX(J) *ALBD (J) * (ARGL+4 *ARGML+ARGPL) / (12. *PI) - 

* (AX(JPl)-AX{J)) *ALBD(J) * 

* 
* 

(2. *ARQiL+ARGPL) / (12. *PI) 
PHBLUzPHBLU-AX (J) *ALBD (J) * (ARGU+4. *ARGMU+ARGPU) / (12. *PI) - 

(AX (JP 1 ) -AX (J) ) *ALBD (J) * 
(2. *ARGMU+ARGPU) / (12. *PI) 

CONTINUE ............................................. 
BY UPPER PANELS ........................... 
PHBUL-0 . 
PHBW=O . 
DO 410 J=NBODY,NBODYH+l, -1 

JP 1=1+MOD (J+NBODY, NBODY) 
ZMID=O .5*  (ZBODY (J) +ZBODY (JP1) ) 
AM=AIMAG(CLOG(ZI-ZMID) ) 
IF(I.EQ.JP1) THEN 
AP=o . 
AmAIMAG (CLOG (ZI-ZBODY (J) ) 1 
ELSE 
AP=AIMAG(CLOG(ZI-ZBODY(JPl) 1 )  
A=AIMAG (CLOG (ZI-ZBODY (J) 1 
ENDIF 
IF(A.LT.0.) THEN 
AReA4-2. *PI 
ELSE 
ARG-A 
ENDIF 
IF(AM.LT.0.) THEN 
?mGM=AM+2. *PI 
ELSE 
-=AM 
ENDIF 
IF (AP . LT. 0. ) THEN 
ARGP=AP+2. *PI 
ELSE 
ARGP=AP 
ENDIF 
ARGL=ARG 
ARGML=ARGM 
ARGPL=ARGP 
IF (I. EQ . JP 1) THEN 
ARGU=ARGL+Z.*PI 
ELSE 
ARGU-ARGL 
ENDIF 
ARGMU==ARGML 
ARGPU=ARGPL 
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PHBUL=PHBUL-ALBD (J-1) * (AX (JP1) *ARGPL+2. * (AX (JP1) +AX (J) 1 *ARGML 

PHSUU=PHBW-ALBD(J-l) "(AX(JP1) *ARGPU+2.* (AX(JPl)+AX(J) ) *ARGMU 
* +AX(J)*ARGL)/(12.*PI) 

* +AX(J) *ARGU) / (12.*PI) 
410 CONTINUE 

PHBL=PHBLL+PHBUL 
PHBU=PHBLU+PHBUU 

DO 510 J=l,NWAKE 
ALsAIMAG (CLOG (ZI-ZWAKE (J) ) ) 
AU=AIMAG(CLOG(ZI-CONJG(ZWAKE(J)))) 
IF(AL.GE.0.) GO TO 610 
ARGL=AL+2. *PI 
GO TO 710 

610 ARGL=AL 
710 IF(AU.GE.0.) GO TO 810 

ARGU=AU+2.*PI 
GO TO 910 

PHWL=PHWL-GWAKE (J) *ARGL/ (2. *PI) +GWAKE (J) *ARGU/ (2. *PI) 
PHWU=PHWU-GWAKE (J) * (ARGL+2. *PI) / (2. *PI) 

810 ARGU=AU 
910 

* +GWAKE (J) *ARGU/ (2. *PI) 
.510 CONTINUE c .............................................. 
C TOTAL POTENTIAL ON UPPER AND LOWER SURFACE ---------------- 

PHL=PHF+PHBL+PHWL 
PHU-PHF+PHBU+PHWU 

C AXIAL VELOCITY ON UPPER AND LOWER SURFACE ----------------- 
WITAN (EPSL) * (PHU-W*REAL (ZI) -WU*AIMAG (21) ) 
ULmTAN (EPSL) (PHL-VL*REAL (ZI) -WL*AIMAG (ZI) ) c ............................................................. 
RETURN 
END 

SUBROUTINE LIFT 

IMPLICIT COMPLEX Z 

COMMON/BODY/Ml,M2,M3,M4 
COMMON/PARAMT/PI,DX,XO,ALPH, EPSL,AO,XK,DELTA 
COMMON/GOMTRY/TGBD,NBODY,NBODYH,ZBODY (15O), ZSBD(l50) ,ALBD (150) 
COMMON/PRESSURE/CPL(150) ,CPU(150) ,CPML(150) ,CPMU(150) 
COMMON/LIFT/XLFTW, XLFTF, XDRGW, XDRGF, XLIFT, XDRAG, RATIO 

FORCES ON THE MAIN WING ............................... 
mu-0. 
WFL=O. 
DO 100 I=l,Ml-1 

wFL=WFL+ (CPL ( I) +CPL ( I+1) ) *ALBD ( I ) /2. 
WFU=wFu+ (CPU (I) +CPU ( I+1) ) *ALBD (I) /2. 

10 0 

XLFTW= (WFL-WU) *COS (ALPHI 
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FFLaO . 
FN==O. 
DO 300 I=Ml,M2-1 

FFL= (CPL (I) +CPL ( I+l ) ) *ALBD ( I ) / 2  . FFU=FFU+ (CPU (I) +CPU (I+1) ) *ALBD (I) /2. 
30 0 

C 

C 

XLFTF= (FFL-FFU) *COS (DELTA) * (1. +SIN (EPSL) *SIN (ALPH) *TAN (DELTA) ) 
XDRGFs (FFL-FFU) *COS (DELTA) *SIN (ALPH) * * (1. -SIN (EPSL) *TAN (DELTA) /SIN (ALPH) ) ........................................................ 

TOTAL FORCES ......................................... 
~LIFTS (XLFTW+XLFTF) /XK 
XDRAG= (XDRGW+XDRGF) /XK 

RATIO=XLIFT/XDRAG 

RETURN 
END 
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